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Preface

This volume contains the proceedings of the first international meeting on Formal
Methods in Systems Biology, held at Microsoft Research, Cambridge, UK, June
4–5, 2008.

While there are several venues that cover computational methods in systems
biology, there is to date no single conference that brings together the application
of the range of formal methods in biology. Therefore, convening such a meeting
could prove extremely productive. The purpose of this meeting was to identify
techniques for the specification, development and verification of biological mod-
els. It also focused on the design of tools to execute and analyze biological models
in ways that can significantly advance our understanding of biological systems.
As a forum for this discussion we invited key scientists in the area of formal
methods to this unique meeting.

Although this was a one-off meeting, we are exploring the possibility of this
forming the first of what might become an annual conference. Presentations at
the meeting were by invitation only; future meetings are expected to operate on
a submission and review basis.

The Steering Committee and additional referees reviewed the invited papers.
Each submission was evaluated by at least two referees. The volume includes
nine invited contributions.

Formal Methods in Systems Biology 2008 was made possible by the contri-
bution and dedication of many people. First of all, we would like to thank all the
authors who submitted papers. Secondly, we would like to thank our additional
invited speakers and participants. We would also like to thank the members
of the Steering Committee for their valuable comments. Finally, we acknowl-
edge the help of the administrative and technical staff at the Microsoft Research
Cambridge lab.

April 2008 Jasmin Fisher
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Roland Ewald

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Generic Reactive Animation:

Realistic Modeling of Complex Natural Systems

David Harel and Yaki Setty

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science,

Rehovot 76100, Israel
{david.harel,yaki.setty}@weizmann.ac.il

Abstract. Natural systems, such as organs and organisms, are large-
scale complex systems with numerous elements and interactions. Model-
ing such systems can lead to better understanding thereof and may help
in efforts to save on resources and development time. In recent years,
our group has been involved in modeling and understanding biological
systems, which are perhaps the prime example of highly complex and
reactive large-scale systems. To handle their complexity, we developed
a technique called reactive animation (RA), which smoothly connects a
reactive system engine to an animation tool, and which has been de-
scribed in earlier publications. In the present paper we show how the
basic idea of RA can be made generic, by providing a simple general
way to link up any number of reactive system engines — even ones that
are quite different in nature — to an animation tool. This results in
natural-looking, fully interactive 3D animations, driven by complex re-
active systems running in the background. We illustrate this with two
examples that link several tools: Rhapsody for state-based specification,
the Play-Engine for scenario-based specification, MATLAB for mathe-
matical analysis and the 3DGameStudio for animation. Our examples
are both from biology (pancreatic development) and from everyday ac-
tivities (e.g., gym training).

1 Introduction

Natural systems, such as organs and organisms, are large-scale complex systems
that maintain an ongoing interaction with their environment and can thus be
beneficially specified as reactive systems [18,23]. This observation has led to quite
a lot of work on modeling biology using various software engineering tools and
ideas to simulate behaviors in various natural systems. To handle the complex-
ity of natural systems we need even better visualization techniques than those
1 This research was supported in part by The John von Neumann Minerva Center

for the Development of Reactive Systems, and by a grant from the Kahn Fund for
Systems Biology, both at the Weizmann Institute of Science. Part of this David
Harel’s work carried out during a visit to the School of Informatics at the University
of Edinburgh, which was supported by a grant from the EPSRC.

J. Fisher (Ed.): FMSB 2008, LNBI 5054, pp. 1–16, 2008.
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2 D. Harel and Y. Setty

used for conventional reactive systems. Indeed, animating natural system reveals
unexpected behavioral properties that emerge from the simulations at run-time.
These emergent properties are not explicitly programmed, but are often a con-
sequence of massively concurrent execution of basic elements that act in concert
as a population [8].

In recent years, our group has been involved in developing a technique called
reactive animation, whereby reactive systems whose external form requires more
than conventional kinds of GUIs are modeled by languages and tools for the re-
activity linked with tools for true animation. In our earlier work on this topic [10]
we were motivated by a complex modeling example from biology, which required
us to model many thousands of T cells developing, moving around and inter-
acting in the thymus gland, and we wanted the animation to show this actually
happening. Our implementation linked the Rhapsody tool, with its statechart
model of the system, to a Flash animation front-end, and enabled interaction
of the user with the system either via Rhapsody or via the Flash front-end. In
that work, the animation was two-dimensional. More importantly, however, the
linking itself was binary — one reactive system engine to one animation tool —
and it was carried out in an ad hoc fashion. It thus did not provide a mechanism
for a more generic reactive animation.

In this paper we exhibit a stronger kind of reactive animation, by devising
a specific mechanism for linking any number of tools, which may include an
animation tool and reactive system engines of different kinds. We illustrate the
technique and the underlying principles (as well as the feasibility of 3D reactive
animation) by linking up the Rhapsody tool, which supports statecharts and
object diagrams, and the Play-Engine [22], which supports live sequence charts
(LSCs)[9], to 3DGameStudio (3DGS) [1] for animation and MATLAB[28] for
mathematical analysis. Our two reactive engines, Rhapsody and the Play-Engine,
which follow state-based and scenario-based approaches, respectively, are con-
nected through a central mechanism with the 3DGS animation tool and the
Mathematical GUI. The mechanism is general enough to support and maintain
any number of such links. We demonstrate the architecture using two main ex-
amples, a complex one from biology and a simpler one closer to everyday life.
We will also briefly discuss possible future directions for modeling other natural
systems.

This paper is supplemented by a website (http://www.wisdom.weizmann.ac.
il/∼yaki/GRA), which contains a recording of a short session that was carried
out with the different tools linked together. The material on the site also includes
several more detailed video clips showing some of the possibilities of the setup.
We have deliberately left out in this paper much of the technicalities of the
method and its implementation, and have focused instead on the motivation
and objectives, and on examples. For readers who are interested in the technical
details, there is a technical report that explains things in greater detail, and
which can be downloaded from the above website. That report also includes a
detailed description of how the architecture is employed, and it briefly suggests
directions for standardizing the platform. The site also points to some additional

http://www.wisdom.weizmann.ac.il/~yaki/GRA
http://www.wisdom.weizmann.ac.il/~yaki/GRA
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supplementary material on the examples (e.g., explanatory clips and interactive
illustrations).

In our first example, we employ the architecture to model pancreatic develop-
ment in the mouse, which besides its biological importance turns out to be a highly
complex system for modeling, with numerous different kinds of objects. Our model
includes a state-based specification linked to a 3-dimensional animated front-end
and a mathematical analysis GUI [36]. A prerecorded clip of the simulation at run
time is available at www.wisdom.weizmann.ac.il/∼yaki/runs. In this example,
Statecharts [16] (in Rhapsody [38]) describe the behavior of the biological objects
themselves (e.g., cells), which are represented in the front-end as 3D elements
possessing realistic animation attributes. Statistics and analysis of the simula-
tion are shown in a separate GUI (in MATLAB). We discuss how available
scientific data is specified as statecharts in Rhapsody, and how scenarios via the
LSCs and the Play-Engine may answer the need for mutating the system. The
front-end shows the animation continuously, and provides the means to interact
with it. The mathematical analysis GUI provides statistics and graphs of the
simulation. Generally, the simulation corresponded well with the biology, indi-
cating that the 3D structure emerging from the simulation seems to capture
pancreatic morphogenesis in mice. Moreover, this platform enabled to perform
a set of in silico experiments, which reproduced results similar to in-vivo ef-
forts and provided a dynamic description. In addition, the model suggested new
intriguing results that are currently being tested through collaboration, for an
experimentally validation.

Our second illustration of the method is a more intuitive running example
(pun intended...) of a 3-participant gym training system, which includes a team
leader and two team members, running, walking, jumping, crawling and stand-
ing, and if needed also swimming and wading (in the special case of scenar-
ios involving flooding). The system also includes a moving camera, sub-viewing
abilities, and more. We discuss the way certain parts of the overall controlling
behavior are specified in scenarios via the LSCs and the Play-Engine, whereas
others, such as the behavior of the participants themselves, are specified using
statecharts in Rhapsody. The front-end shows the animation continuously, and
provides the means to interact with it. Interactive illustrations of this example
are available at http://www.wisdom.weizmann.ac.il/∼yaki/GRA/gym.

2 Reactive Animation

Reactive animation (RA) [10] is a technology aimed at combining state-of-the
art reactivity with state-of-the-art animation (Fig. 1A). RA links the effort of
reactive system design and the front-end design by bridging the power of tools
in the two separate areas. In essence, RA has two arms: One comprises power-
ful tools and methods for reactive systems development, the heart of which is
a rigorous specification of the systems reactivity. The other comprises powerful
animation tools to represent the specification as an intuitive, controllable, ani-
mated front-end. The animated front-end serves as a communication channel for

www.wisdom.weizmann.ac.il/~yaki/runs
http://www.wisdom.weizmann.ac.il/~yaki/GRA/gym
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better human understanding of the simulation. Technically, RA is based on the
view that says that a system is a closely linked combination of what it does and
what it looks like. From this stem two separate but closely linked paths: reactive
behavior design and front-end design.

Implementing a tool for RA poses a number of challenges: accuracy, per-
formance (e.g., CPU usage, memory management, smoothness of the resulting
animations), distribution, ease of interaction, openness and platform indepen-
dence. These should be considered at the architecture level and with the specific
functionality chosen.

RA was conceived of during an effort to model and simulate the development
of T-cells in the Thymus gland [10], where it was implemented using a direct
communication socket between a state-based model (using statecharts in Rhap-
sody) and a 2D animated front-end (using Flash). Our work improves upon [10]
by providing a generic, modular and fully distributed multi-party architecture
for RA, which also employs 3D animation (Fig. 1B).

Fig. 1. A. Reactive animation: an animation tool is binary linked to a reactive system
tool to enable natural-looking, fully interactive animations. B. Implementing generic
multi-party reactive animation: reactive engines, animation, mathematical and any
other type of tool are linked together using a central routing server (a star topology).
Tools communicate through a TCP socket and transmit XML based messages, enabling
a fully distributed, platform-independent implementation (in a way similar to Soap).

3 Implementation Architecture

The architecture of our examples includes two reactive engines supporting two dif-
ferent modeling approaches: a state-based, intra-object approach, and a
scenario-based, inter-object approach.The reactive enginesare linkedup toa three-
dimensional animated front-end and a mathematical analysis GUI, using a central
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routing server. In principle, the architecture can be extended by using any number
of additional components of any relatedkind (e.g., a 2D front-endusingFlash).1Be-
low we briefly describe each of the architectural components, a detailed technical
report is available at www.wisdom.weizmann.ac.il/∼yaki/GRA/.
The Central Routing Server: The serverwas implemented as a multi-threaded
executable application. Each thread serves as a communication plug-in for one ar-
chitectural component. A TCP socket is initialized upon registration to the server,
enabling message transmission and XML parsing. See the supplementary techni-
cal report for a more detailed description.
The State-Based Specification: We use the language of statecharts [17] and
the Rhapsody tool [38] to implement state-based specification. Statecharts are
naturally suited for the specification of objects that have clear internal behav-
ior, an attribute we call intra-object. Together with object model diagrams, they
provide a graphical representation of the dynamics of objects using states, tran-
sitions, events, and conditions [20]. The language makes it possible to visualize
the behavior of an object in a way that emphasizes the elements in its life-cycle.
Rhapsody is a model-driven development environment supporting statecharts
and object model diagrams (see [20]), and can be viewed also as a UML tool.
It enables object-oriented design, with full execution of the statechart-rich mod-
els, and full code generation. Table 2, top details a representative example for a
state-based specification.
The Scenario-Based Specification: We use the language of LSCs, live se-
quence charts [9] and the Play-Engine [22] to implement scenario-based specifi-
cation. LSCs are scenario-based, and inter-object in nature, and are particularly
fitting for describing behavioral requirements. LSCs extend classical message
sequence charts (MSCs) with logical modalities, depicted as hot and cold ele-
ments in the charts. The language thus achieves far greater expressive power
than MSCs, and is comparable to that of temporal logic. In particular, LSCs
can specify possible, mandatory and forbidden scenarios, and can be viewed as
specifying multi-modal restrictions over all possible system runs. An LSC typi-
cally contains a prechart and a main chart. The semantics is that if the scenario
in the prechart executes successfully, then the system is to satisfy the scenario
given in the main chart. The Play-Engine is the tool built to support LSCs, that
enables a system designer to capture behavioral requirements by ‘playing in’ the
behavior of the target system, and to execute the specified behavior by ‘playing
out’. In the play-out phase the user or an external component executes the ap-
plication as if it were the real system. Table 2, bottom details a representative
example of a scenario-based specification.
The 3D Animated Front-End: The front-end was implemented using a three
dimensional authoring tool (3D Game Studio (3DGS) [1]), which supports real
time rendering of 3D animation. In 3DGS, objects can have associated actions,
which appear as part of its attributes. The scripting language of 3DGS, C-Script,

1 In earlier work of our group, we developed InterPlay, which is a different kind of tech-
nique to connect reactive system engines, based on pairings of connections [4].

www.wisdom.weizmann.ac.il/~yaki/GRA/
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enables control of animation objects (e.g., changing an attribute) and supports
object oriented programming. We choose to add a controlling GUI to our system
as part of the front-end (as was done also in the thymus model [10]). However,
in more complex systems such a GUI could very well complicate the front-end
and should be designed as a different architectural component, possibly using a
GUI-building tool.
Mathematical Analysis GUI: We designed a mathematical analysis GUI us-
ing MATLAB from MathWorks [28], which is a high-level language and inter-
active environment for computational tasks. This GUI generates various graphs
and statistics based on data received from the simulation. Similar mathemati-
cal analysis tools such as Mathematica from Wolfram Research, can also be
plugged-in the architecture.
The Architecture at Run-Time: Each component, when executed, initiates
a connection with the Central Routing Server. The setting of components in the
architecture enables pairwise message transfer between them. At run-time, mes-
sage passing drives the simulation in the participating components. For example,
messages from the reactive engines (i.e., Rhapsody and Play-Engine) drive the
animation in the front-end. Table 1 describes in detail possible runs of one of
our examples.

4 Modeling a Large-Scale Biological System

We have employed the proposed generic RA setup to model the development
of the pancreas, a highly complex system, containing numerous objects. The
pancreas is an essential organ, which is involved in regulation of metabolic
and digestive pathways. During development, it takes on an interesting three-
dimensional cauliflower-like shape. A prerecorded run of the simulation is avail-
able at www.wisdom.weizmann.ac.il/∼yaki/runs

Abnormal functioning of the pancreas leads to lethal diseases such as pancre-
atitis and diabetes. Our model includes a comprehensive state-based specification
that results from analyzed scientific data. It is linked to an animated front-end
and a mathematical analysis GUI. In the future, we plan to link these two also
with a scenario-based specification to simulate mutations (e.g., defective blood
vessel). In [36], we provide details of this the work and discuss the intriguing novel
ideas that emerged from the model. See http://www.wisdom.weizmann.ac.il/
∼yaki/abstract/ for a short description.
Modeling Pancreatic Development: We modeled pancreatic development
as an autonomous agent system [5] in which cells are autonomous entities that
sense the environment and act accordingly. The cell object in the model consists
of three elements, the nucleus, the membrane and the cell itself. The nucleus
operates as an internal signaling unit that expresses genes to drive the devel-
opment, while the membrane acts as an external signaling unit that senses the
environment and alerts the cell. The cell itself changes states in response to the
various signals (see Fig. 2). The environment was modeled as a computational

www.wisdom.weizmann.ac.il/~yaki/runs
http://www.wisdom.weizmann.ac.il/~yaki/abstract/
http://www.wisdom.weizmann.ac.il/~yaki/abstract/


Generic Reactive Animation: Realistic Modeling 7

Fig. 2. The model for a cell as an autonomous agent accompanied with its visualization
(top-left)

grid, with values that designate concentrations of biological factors. Various bi-
ological components participate in the process by regulating factors in the envi-
ronment. Each of these was specified as an object accompanied by a statechart
to describe its behavior. Cells however, are considered as the basic objects, and
the progress of the simulation/execution relies very much on their behavior. An
execution of the model is initiated with approximately 500 cells, which, among
other processes, proliferate and create new instances. A typical execution ends
with almost 10, 000 objects.
Designing an Animated Front-End: We visualize the simulation in an ani-
mated front-end, which we built based on what is depicted in the literature. Each
one of the participating components is represented as a 3D element possessing
attributes to represent change in location and behavior (Fig. 3A). For example,
the cells are represented in the front-end as spheres. At run time, an instance of
a cell directs its corresponding animated sphere according to its active state. A
differentiated cell might, for example, change its color to depict the new stage.
As the simulation advances, the cells dynamically act in concert to form the
cauliflower-shape structure of the pancreas (Fig. 3B). At any stage, the user
can halt the simulation and query objects or interact directly with the emerging
structure (e.g., ‘slice’ the structure) (Fig. 3C).
Mathematical Analysis GUI: We designed a GUI in MATLAB to provide
mathematical analysis of the simulation. The GUI continuously receives data
from the reactive engine, analyzes it and provides graphs and statistics (for
example, graphs of cell population, proliferation rate etc.). It thus enables the
user to evaluate the dynamics of the simulation over time. Fig. 3D shows a
snapshot of a graph that displays the cell count over time. In general, the system
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Fig. 3. A. 3D Animated front-end for the pancreatic development. B. The pancre-
atic structure emerging from the simulation. C. User interaction with the simulation,
the simulation was halted and a cross-section cutting was triggered. D. Mathematical
analysis of the pancreatic development: number of cells as function of time.

developer can design many graphs and statistics, which are related to the relevant
system and whose data is gleaned from the model.
Specifying Mutations in the Simulation: In the pancreas project, as well as
in modeling other large-scale natural systems, scenario-based programming may
help in specifying mutations in a rather natural way. A typical mutation scenario
should specify the changes in the model that correspond to relevant mutations be-
tween elements in the system. At run-time, the user may trigger relevant scenarios
to mutate the system and then watch the effect on the simulation. For example,
a mutation scenario in pancreatic organogenesis would specify the effect of a de-
fective blood vessel on the participating elements, in particular cells.

In the past, work in our group has shown scenario-based programming to
be beneficial for modeling biology. For example, it was the dominant tool used
for the specification and verification of certain developmental aspects in the
reproductive system of the C. elegans nematode (see e.g., [26,27,35,25]).
The Pancreas at Run-Time: Once the model is executed, instances of the
Cell are created and appear in the front-end as a sheet of red spheres on the
proper location on the flat endodermal Gut. Once a Cell instance is created,
one state in each concurrent component of its statechart is set to be in active
state. At this point, the Cells are uniform and their active states are set to
the initial states . In parallel, the environment is initiated and defines the initial
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concentrations of factors in the extracellular space. As the simulation advances,
cells respond to various events (e.g., the concentration of factors in their close
vicinity) by changing their active states accordingly. Hence, the sheet loses uni-
formity at a very early stage of the simulation.

As the simulation advances, among other things, cells are differentiated, pro-
liferated and move. The processes are driven by many extracellular events (e.g.,
from the membrane) and intra-cellular events (i.e., from the nucleus). These
events change the active states in orthogonal specifications through the various
stages of the cell’s life cycle. For example, the proliferation process is initiated
by extra-cellular signals when the membrane senses relevant factors and gener-
ates a chain of inter-cellular events (in the cell and the nucleus) that promote
cell division. Proliferation ends when the Cell duplicates itself by creating an
identical instance. In turn, a message is sent to the front end, which creates a
new identical sphere corresponding to the new Cell at the proper location.

The cell population acts in concert to drive the simulation, by promoting
various decisions in individual cells. Consequently, messages are continuously
being sent between the different components in the architecture, in order to drive
the simulation. The process is displayed in parallel in each one of the components.
The state-based specification highlights the active state of the different objects
and, at the same time, the front-end and the mathematical GUI continuously
visualize and analyze the simulation.

Once scenario-based specification is combined to the model, interplay between
scenario- and state-based specifications will drive mutations in the simulation.
The user would be able to trigger mutations through the various tools in the
model and then watch the mutated behavior through the animation and analysis.
Such mutations may be tested in vivo on the real system through laboratory
collaboration.

5 A Team Training Model

The second example we describe here is a simple, yet representative, model. It
involves gym training sessions for a team of three: a team leader and two team
members. The team leader performs various actions at different speeds, and the
team members follow suit, after a short “comprehension” delay. Team members,
however, are not as physically fit as the team leader, and need to rest while per-
forming certain fast actions. In addition, the team leader reacts to environmental
changes (e.g., a Flood) and performs an appropriate set of actions to handle such
situations. The model implements a state-based and scenario-based model, linked
to an animated front-end. Detailed descriptions of two execution examples of the
model are given in Table1. Also, http://www.wisdom.weizmann.ac.il/∼yaki/
GRA/gym contains several self-explanatory video clips.
Modeling Team Behavior Using Statecharts: We used the state-based
approach to specify the team’s actual behavior. Our Rhapsody model includes
three classes: the team leader, the team member and the team. We demonstrate
statecharts using two team members, however, the model can be easily extended

http://www.wisdom.weizmann.ac.il/~yaki/GRA/gym
http://www.wisdom.weizmann.ac.il/~yaki/GRA/gym
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to handle any number thereof. The behavior of each model element is specified by
a different statechart. The statecharts of the leader and a member describe the
action and the speed taken and are very similar (see Table2 for greater details).
The statechart of the team handles interactions with the environment.
Specifying Team Training Tasks Using LSCs: We used the scenario-based
approach to specify training tasks for the team. The Play-Engine model specifies
several training task, which include a set of instructions for the team and for
the environment. Four different tasks have been specified: Escape, Flood, Storm
and Volcano Eruption. Each of these initiates a different scenario. Triggering
a new task while another is being executed causes a violation and the new
LSC terminates. An instruction message (e.g., crawl, jump, swim) triggers an
LSC that forces the engine to execute a specified set of messages. In addition,
LSCs specify camera control and environmental changes (see Table2 for greater
details).
Designing an Animated Front-End: The front-end for the model consists of
a real-time 3D animation of the training exercise. Animated renditions of a team
leader and a team member were created based on the cbabe model of 3DGS. The
participants perform various actions such as walking, swimming, wading etc. The
user may query the model by clicking an animated figure, and the relevant data
(e.g., ID, current action) is displayed next to it. Environmental changes such as
a flood may occur and the animated front-end displays the change accompanied
by matching sound effects. The GUI portion of the front-end enables the user to
trigger an instruction to the team (e.g., to jump fast) or to assign a task (e.g.,
to escape), respectively. He or she also controls the camera’s activity and may
query the running simulation.
Team Training at Run-Time: Once the model is executed, the state-based
specification of the team behavior is initiated and the active state of each player
is set to Stand (i.e., the initial state). As the simulation advances, various events
(either internal or external) change the active state of the players. For example,
instructions from the leader to the members are internal events of a team that
drive within the state-based specification. Similarly, external events from the
scenario-based specification, describing team tasks (e.g., flood), directs the active
state of state-based specification.

The behavior of the model is continuously visualized at the front-end in vari-
ous manners. For example, when a flood task is initiated, a water wave appears
at the front-end and the team starts wading. At every time-point, the user may
interact with the model so as to trigger different behaviors of the team (e.g.,
change the action of team members).

6 Additional RA Examples

We are currently looking into using our techniques in additional biological mod-
eling projects. We use the generic reactive animation architecture to visualize
behaviors as part of the GemCell project [2]. GemCell contains a generic state-
chart model of cell behavior, which captures the five main aspects of cell behavior
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(proliferation, death, movement, import and export). This generic model is cou-
pled with a database of biological specifics (DBS), which holds the information
about the specific cellular system. Modeling a particular segment of biology in-
volves setting up the DBS to contain data about the specific behaviors and
responses of the particular kinds of cells in the system under description. During
execution, statecharts read in the specific data and the combination runs just as
described in the model above.

We have employed the generic reactive animation architecture to link the
GemCell model (in Rhapsody) with a 2D animated from-end (in Flash). At run
time, the front-end continuously visualizes the behavior of numerous cells. The
visualization clarifies the underlying principles in simulation. This project is still
in its early stages of development.

In addition to this, we have tested the genericity of our architecture on some
other examples, with different tools. We have a ‘traffic handing’ model that uses
our architecture to link the scenario-based programming tool, the Play-Engine,
to a 2D animated front-end using Flash. Also, we have designed a ‘police at work’
game using S2A[21], an aspectJ-based tool for scenario-based programming,
linked to a 2D animated front-end in Flash.

Further details of these examples appear in http://www.wisdom.weizmann.
ac.il/∼yaki/GRA.

7 Discussion

In the last few years, increasing interdisciplinary work combines experimental
results with theoretical models in order to explain various natural systems (see
e.g., [3,7,15,29]). Another type of modeling work formalizes gene expression and
protein activity using a variety of mathematical and computational tools (for ex-
ample, see [6,24,31,32,33]). However, most of the relevant work ignores multiple
concurrent activities and focuses on a single mechanism in the entire system. An
example for comprehensive modeling is the beating heart project [30], which for-
malizes the electric activities in the heart. However, by its mathematical nature,
the model interactivity and real time animation are limited since simulations
require much computation time.

Recently, various work uses computational modeling approaches for natural
systems. In [14], hybrid automata are used to model the Delta-Notch mechanism,
which directs differentiation in various natural systems. In [12], computational
challenges of systems biology are described and various approaches for achiev-
ing them are discussed. A similar motivation for model-driven engineering ap-
proaches is discussed in [34]. Recently, in [13] computational and mathematical
approaches are reviewed and the term executable biology is used to describe the
kinds of modeling carried out in our group, and recently also elsewhere. In [39],
a model for a eukaryotic cell is built, in which a UML class diagram was used
to formalize the relations between a cell and its sub-cellular elements. The setup
was empowered by specifying behavior of different cell types (e.g., red blood cell)

http://www.wisdom.weizmann.ac.il/$sim $yaki/GRA
http://www.wisdom.weizmann.ac.il/$sim $yaki/GRA
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Table 1. Illustration of two execution examples of the team training model (for interac-
tive illustration and recorded clips see http://www.wisdom.weizmann.ac.il/∼yaki/
GRA/gym )

.
Illustration of the Architecture:
The Team Training Model: Message transmission between the architectural components of the model: The
state-based model (ST, at top left); The scenario-based specification (SC, at bottom left); and the animated
front-end (FE, at middle right).

Example 1: Medium Speed Jumping Example 2: Flood Training Task
Participating components: FE, ST Participating components: FE, SC,ST
Description: Description:
When the user sets the speed scroll bar to medium and
clicks the jump button, FE notifies (i.e., sends a mes-
sage to) ST about the instruction (1). Accordingly, the
team object in ST generates an inner event to set the
statechart of the team leader to jump at medium speed
(i.e., the Action sub-statechart moves to the Jumping
state and the Speed sub-statechart is set to Medium).
After a predefined time interval, the team object gen-
erates another event for the statecharts of each of the
team members. Upon entering the Jumping state, ST
notifies FE to animate the action (2). Consequently, the
animated team leader jumps, and the team members fol-
low suit. The user can change the camera’s position to
view the team from different angles. Camera relocation,
however, has no effect on the running simulation. Dur-
ing a run of the system, the user may query the model
or relocate the camera. When a query is requested, FE
notifies ST (1), which provides the appropriate informa-
tion. Changes in the camera, however, do not interact
with the reactive engines.

The user assigns a flood task to the team by clicking on
the appropriate button. Consequently, FE notifies SC
and the flood LSC is activated (3), initiating the sce-
nario. The first message in the flood LSC is a running
instruction for the team. Consequently, the run LSC
is activated, and it notifies ST to run at a slow speed
(4). Later on, a message in the flood LSC instructs the
environment to initiate a flood. The FloodAlert LSC
is activated and notifies FE (5). Accordingly, a water
layer is displayed and a corresponding splashing sound
is played. Immediately after this, the swim LSC is ac-
tivated and it notifies ST. The swim message enables
a forbidden element in the run LSC, causing the run
LSC to exit. Again, the swim LSC notifies ST, which
in turn notifies FE(2). The flood LSC completes after
it instructs the team to walk, the environment to end
the flood, and the team to stand (i.e., to stop moving).
At this point, there are no more LSCs active in SC,
the statecharts of ST are all in the standing state, and
the animated figures in FE are standing, ready for the
next task. In case a fast speed action is taken, each of
the two team member objects will enter a resting state
after some time. Consequently, ST notifies SC(6) and
FE(2). Concurrently, the team member in FE changes
its appearance to resting, an SC in SC is triggered, and
it notifies FE (5) to activate the team member’s camera.

http://www.wisdom.weizmann.ac.il/~yaki/GRA/gym
http://www.wisdom.weizmann.ac.il/~yaki/GRA/gym
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Table 2. Sample of the model: statechart behavior of the team leader (top), and LSC
specification describes Flood task(bottom)

Samples of the Model Description

The team leader’s statechart: The behav-
ior of the team leader is specified by a stat-
echart with four orthogonal components
(i.e., concurrent sub-statecharts). The
most important of these are Action and
Speed, which specify the team leader’s cur-
rent action (e.g., running, working) and
current speed (slow, medium, fast), re-
spectively. The statechart of a team mem-
ber is similar, but it has an additional be-
havioral element: a team member takes a
short rest while a fast action is performed.
To add this behavior, a superstate was
added to a team member’s Action sub-
chart and an internal statechart was added
to the fast state. The other two orthog-
onal components are less important; they
serve as internal and external communica-
tors.

The flood LSC: assigning a flood task trig-
gers the flood LSC, which initiates the fol-
lowing scenario: the team participants run
until the water level rises, and then they
swim until the water level is low enough
to walk. When the flood is over, the team
participants stop motion, and stand, ready
for a new task. During task execution, the
run instruction triggers an LSC that in-
structs the team to run at an increasing
speed. When the swim instruction is taken,
the run LSC terminates.
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using the ROOM formalism. A similar approach was employed in [37] to model
the Ethylene-Pathway in Arabidopsis thaliana using statecharts and LSCs.

As mentioned, the present paper is an extension and generalization of our
previous work on reactive animation [10], which was motivated by the need
for a clean way to bridge the gap between how objects behave and how that
behavior should show up on the screen. The idea was to separate the reactivity
from the visualization, making it possible to choose the best tools for each, and
thus enjoying the benefits of both worlds. Having a reactive engine that controls
the simulation while an animated front-end monitors the visualization, makes it
possible to model large-scale systems with many objects and interactions. Each
agent in the reactive engine has a corresponding animated figure in the front-
end, and since the two models are separate, they can be designed by specialists
in their particular fields using any state-of-the-art tools.

In [10], reactive animation was illustrated by simulating the development of
T-cells in the Thymus gland, and it was implemented using a direct communica-
tion socket between a state-based model (statecharts in Rhapsody) and a 2D an-
imated front-end (in Flash). The present paper provides a generic, modular and
fully distributed architecture, with the ability to link multiple reactive engines,
and it illustrates the feasibility of reactive animation with a three-dimensional
visualization. Furthermore, this platform was used beneficially for the realistic
modeling of pancreatic development, a complex and large-scale biological system.
Moreover, the model reproduced results of relevant experiments and suggested
new intriguing ideas [36].

We believe that our biological models emphasize the benefit for modeling com-
plex large-scale systems using reactive animation. In the models, the visualized
concurrent execution of the basic elements revealed properties that were not ex-
plicitly programmed into the model. Rather, they emerge from the concurrent
execution of cells as a population. For example, in the pancreas model, we found
that concurrent execution of pancreatic cells gives rise to a property that corre-
sponds well with first transition clusters found to appear early in the developing
organ in vivo [36]. Similarly, the concurrent execution of T-cell development in
the thymus led to the emergence of competitive behavior between the cells [11].
Moreover, using the model, we analyzed and studied these properties and sug-
gested some insights into the phenomena [8,11,36]. In general, since emergent
properties are dynamic properties of a population, it is rather difficult to predict
them from the model’s static specifications. At the animated front-end, which
visualizes the simulation, the phenomenon is often easily seen and can then be
carefully examined against the literature for a biological explanation.

While we have used a number of examples to illustrate generic reactive an-
imation, we find the technique particularly beneficial for large-scale biological
systems. We envision that in the long run, the pancreas project may lead to
new insights about pancreas-related diseases, such as diabetes. Furthermore, we
feel that generic RA my perhaps help in efforts to build an in-silico organ or
organism (see, e.g., [19]).
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Abstract. We introduce bounded asynchrony, a notion of concurrency tailored
to the modeling of biological cell-cell interactions. Bounded asynchrony is the
result of a scheduler that bounds the number of steps that one process gets ahead
of other processes; this allows the components of a system to move independently
while keeping them coupled. Bounded asynchrony accurately reproduces the ex-
perimental observations made about certain cell-cell interactions: its constrained
nondeterminism captures the variability observed in cells that, although equally
potent, assume distinct fates. Real-life cells are not “scheduled”, but we show that
distributed real-time behavior can lead to component interactions that are obser-
vationally equivalent to bounded asynchrony; this provides a possible mechanistic
explanation for the phenomena observed during cell fate specification.

We use model checking to determine cell fates. The nondeterminism of
bounded asynchrony causes state explosion during model checking, but partial-
order methods are not directly applicable. We present a new algorithm that re-
duces the number of states that need to be explored: our optimization takes ad-
vantage of the bounded-asynchronous progress and the spatially local interactions
of components that model cells. We compare our own communication-based re-
duction with partial-order reduction (on a restricted form of bounded asynchrony)
and experiments illustrate that our algorithm leads to significant savings.

1 Introduction

Computational modeling of biological systems is becoming increasingly important in ef-
forts to better understand complex biological behaviors. In recent years, formal methods
have been used to construct and analyze such biological models. The approach, dubbed
“executable biology” [10], is becoming increasingly popular. Various formalisms are
putting the executable biology framework into practice. For example, Petri-nets [3,7],
process calculi [22,15], interacting state-machines [9,11], and hybrid automata [13,2].
In many cases, the analysis of these models includes reachability analysis and model
checking in addition to traditional simulations.

This paper focuses on interacting state-machines as a tool for biological modeling
[18,8,19,12,23,9,11]. This approach has recently led to various biological discoveries,
and modeling works that were done using this approach have appeared in high impact
biological journals [12,9,11]. These are discrete, state-based models that are used as
high-level abstractions of biological systems’ behavior.
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var pathway,signal:{0..4};

pathway_atom
init
[] true -> path := 1;
update
[] (0<path<4) & no_input & next(signal)<4 -> path := path+1;
[] (0<path<4) & input & next(signal)<4 -> path := 4;
[] (0<path<4) & next(signal)=4 -> path := 0;

signal_atom
init
[] true -> signal := 3;
update
[] neighborpath=4 & signal>0 -> signal := 4;
[] neighborpath<4 & path=4 -> signal := 0;
[] neighborpath<4 & path<4 & 0<signal<4 -> signal := signal-1;

Fig. 1. Program for abstract model

When using interacting state-machine models to describe a biological behavior, we
are facing the question of how to compose its components. We find that the two stan-
dard notions of concurrency (in this context), synchrony and asynchrony, are either
too constrained or too loose when modeling certain biological behaviors such as cell-
cell interactions. When we try to model cell-cell interactions, we find that synchronous
composition is too rigid, making it impossible to break the symmetry between processes
without the introduction of additional artificial mechanisms. On the other hand, asyn-
chronous composition introduces a difficulty in deciding when to stop waiting for a
signal that may never arrive, again requiring artificial mechanisms.1

Biological motivation. We further explain why the standard notions of concurrency
may be inappropriate for modeling certain biological processes. We give a model rep-
resenting very abstractly a race between two processes in adjacent cells that assume
two different cell fates. The fate a cell chooses depends on two proteins, denoted path-
way and signal, below. The pathway encourages the cell to adopt fate1 while the signal
encourages the cell to adopt fate2. In the process we are interested in, pathway starts in-
creasing slowly. When pathway reaches a certain level, it forces the cell to adopt fate1.
At the same time, pathway encourages the signal in neighbor cells to increase and in-
hibits the pathway in the neighbor cell. The signal starts in some low level and if not
encouraged goes down and vanishes. If, however, it is encouraged, it goes up, inhibit-
ing the pathway in the same cell, and causing the cell to adopt fate2. A simple model
reproducing this behavior is given in Fig. 1.

1 We treat here biological processes as computer processes. For example, when we say ‘waiting’,
‘message’, or ‘decide’ we relate to biological processes that take time to complete, and if
allowed to continue undisturbed may lead to irreversible consequences. Thus, as long as the
process is going on the system ‘waits’, and if the process is not disturbed (‘does not receive a
message’), it ‘decides’.
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We are interested in three behaviors. First, when a cell is run in isolation, the pathway
should prevail and the cell should assume fate1. Second, when two cells run in parallel
either of them can get fate1 and the other fate2. There are also rare cases where both
cells assume fate1. Third, when one of the cells gets an external boost to the pathway it
is always the case that this cell adopts fate1 and the other fate2.

Already this simplified model explains the problems with the normal notions of con-
currency. In order to allow for the second behavior we have to break the symmetry
between the cells. This suggests that some form of asynchrony is appropriate. The com-
bination of the first and third behaviors shows that the asynchronicity has to be bounded.
Indeed, in an asynchronous setting a process cannot distinguish between the case that it
is alone and the case that the scheduler chooses it over other processes for a long time.

Although very simple, this model is akin to many biological processes in differ-
ent species. For example, a similar process occurs during the formation of the wing
of the Drosophila fruit fly [13]. Ghosh and Tomlin’s work provides a detailed model
(using hybrid automata) of this process. The formation of the C. elegans vulva also
includes a similar process [11]. Our model of C. elegans vulval development uses the
notion of bounded asynchrony. Using bounded asynchrony we separate the modeling
environment from the model itself and suggest biological insights that were validated
experimentally [11].

Formal modeling: bounded asynchrony. For this reason, we introduce a notion of
bounded asynchrony into our biological models, which allows components of a biolog-
ical system to proceed approximately along the same time-line. In order to implement
bounded asynchrony, we associate a rate with every process. The rate determines the
time t that the process takes to complete an action. A process that works according to
rate t performs, in the long run, one action every tth round. This way, processes that
work according to the same rate work more or less concurrently, and are always at
the same stage of computation, however, the action itself can be taken first by either
one of the processes or concurrently, and the order may change from round to round2.
Other notions of bounded asynchrony either permit processes to ‘drift apart’, allowing
one process to take arbitrarily more actions than another process, or do not generalize
naturally to processes working according to different rates.

Having the above mentioned example in mind, we define the notion of bounded
asynchrony by introducing an explicit scheduler that instructs each of the cells when
it is allowed to move. Thus, our system is in fact a synchronous system with a non-
deterministic scheduler instructing which processes to move when. We find this notion
of bounded asynchrony consistent with the observations made in cell-cell interactions.
As explained, asynchrony is essential in order to break the symmetry between cells
(processes). It is important to separate the biological mechanism from the synchroniza-
tion mechanism, otherwise the model seems removed from the biology. On the other
hand, much like in distributed protocols, a process has to know when to give up on
waiting for messages that do not arrive. With classical asynchrony this is impossible and
we are forced to add some synchronizing mechanism. Again, in the context of biology,
such a mechanism should be presented in terms of the modeling environment. When
introducing bounded asynchrony both problems are solved. The asynchrony breaks the

2 We note that this process is not memoryless, making continuous time Markov chains inappro-
priate. This issue is discussed further below.
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symmetry and the bound allows processes to decide when to stop waiting. In addition,
the asynchrony introduces limited nondeterminism that captures the diversity of results
often observed in biology.

Possible mechanistic explanation: real time. In some cases, biological systems allow
central synchronization. For example, during animal development, it may happen that
several cells are arrested in some state until some external signal tells all of them to
advance. However, these synchronization mechanisms operate on a larger scale and
over time periods that are much longer than the events described by our model. Thus,
we do not believe that there is a centralized scheduler that instructs the processes when
to move. The behaviors we describe are observed in practice, suggesting that there is
some mechanism that actually makes the system work this way. This mechanism has to
be distributed between the cells. We show that bounded asynchrony arises as a natural
abstraction of a specific type of clocked transition systems, where each component has
an internal clock. This suggests that similar ideas may be used for the abstraction of
certain types of real time systems. Of less importance here, it also may be related to the
actual mechanism that creates the emergent property of bounded asynchrony.

Model checking: scheduler optimization. The scheduler we introduce to define
bounded asynchrony consists of adding variables that memorize which of the processes
has already performed an action in the current round. When we come to analyze such a
system we find that, much like in asynchronous systems, many different choices of the
scheduler lead to the same states. Motivated by partial-order reduction [6], we show that
in some cases only part of the interleavings need to be explored. Specifically, our method
applies in configurations of the system where communication is locally restricted. In
such cases, we can suggest alternative schedulers that explore only a fraction of the
possible interleavings, however, explore all possible computations of the system. We
also compare our techniques with partial-order reduction in a restricted setting with no
concurrent moves. Experimental evaluation shows that our techniques lead to significant
improvement. We are not familiar with works that analyze the structure of communica-
tion in a specific concurrent system and use this structure to improve model checking.

Related (and unrelated) models. The comparison of such abstract models with the
more detailed differential equations or stochastic process calculi models is a fascinat-
ing subject, however, this is not the focus of this paper. Here, we assume that both
approaches can suggest helpful insights to biology. We are also not interested in a par-
ticular biological model but rather in advancing the computer science theory supporting
the construction of abstract biological models.

There are mainly two approaches to handle concurrency in abstract biological mod-
els. One prevalent approach is to create a continuous time Markov chain (CTMC). This
approach is usually used with models that aim to capture molecular interactions [14,22].
Then, the set of enabled reactions compete according to a continuous probability rate
(usually, the χ-distribution). Once one reaction has occurred, a new set of enabled reac-
tions is computed, and the process repeats. This kind of model requires exact quantitative
data regarding number of molecules and reaction rates. Such accurate data is sometimes
hard to obtain; indeed, even the data as to exactly which molecules are
involved in the process may be missing (as is the case in the C. elegans model). Our mod-
els are very far from the molecular level, they are very abstract, and scheduler choices
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are made on the cellular level. When considering processes abstractly the scheduling is
no longer memoryless, making CTMCs inappropriate. For example, consider a CTMC
obtained from our model in Fig. 1 by setting two cells in motion according to the same
rate. Consider the experiment where one of the cells is getting a boost to its pathway.
The probability of the other cell performing 4 consecutive actions (which would lead to
it getting fate1) is 1

16 , while this cannot occur in the real system. In addition, the prob-
ability of both cells assuming fate1 is 0, as the cells cannot move simultaneously.

A different approach, common in Boolean networks [20,4,5], is to use asynchrony
between the substances. Again, this approach is usually applied to models that aim to
capture molecular interactions, however, in an abstract way. Asynchronous updates of
the different components is used as an over-approximation of the actual updates. If
the system satisfies its requirements under asynchronous composition, it clearly sat-
isfies them under more restricted compositions. We note, however, that these models
are used primarily to analyze the steady-state behavior of models (i.e., loops that have
no outgoing edges). As asynchrony over-approximates the required composition, such
steady-state attractors are attractors also in more restricted compositions, justifying this
kind of analysis. For our needs, we find unbounded asynchrony inappropriate.

Bounded asynchrony is in a sense the dual of GALS (globally-asynchronous-locally-
synchronous): it represents systems that look globally, viewed at a coarse time granu-
larity, essentially synchronous, while they behave locally asynchronous, at a finer time
granularity. Efficient implementations of synchronous embedded architectures also fall
into this category. For example, time-triggered languages such as Giotto [16] have a
synchronous semantics, yet may be implemented using a variety of different schedul-
ing and communication protocols.

2 Modeling Cell-Cell Interactions

Here we describe in brief the vulval development of the earthworm C. elegans, a process
that is similar to the process described in Section 1. In a separate paper, intended for
a biological audience, we describe a computational model of this process [11]. Our
model is of abstraction level similar to the example in Section 1. The paper mainly cov-
ers the biological insights the model suggests and their biological validation, bounded
asynchrony and its algorithmic aspects are not covered. Readers interested in the model
itself are referred to [1]

The C. elegans vulva (the egg-laying system) normally derives from three vulval
precursor cells (VPCs) that are members of a larger set of six VPCs, named P3.p – P8.p
(see Fig. 2). Each of the six VPCs is multipotent, capable of adopting one of three cell
fates (1◦, 2◦, or 3◦). The actual fate each cell adopts depends upon three intercellular
signals: the epidermal growth factor receptor (EGFR) inductive signal emanating from
the gonadal anchor cell (AC), the LIN-12/Notch lateral signal operating between VPCs,
and the inhibitory signal coming from the surrounding hypodermal syncytium (Fig. 2).
VPC fates in wild-type animals are influenced by their distance from the AC: the cell
closest to the AC (P6.p) becomes 1◦, the next closest (P5.p and P7.p) become 2◦, and
the most distant cells (P3.p, P4.p, and P8.p) become 3◦.

The postulated mechanism that drives VPC fate specification is as follows. The
EGFR activates an internal cascade that consists of a few proteins. An activation of



22 J. Fisher et al.

Fig. 2. The intercellular signaling specifying three cell fates during C. elegans vulval development

this cascade starts by an increase in the level of the first protein. An increase in the level
of a protein causes the next in line to increase as well until full activation of the cas-
cade. There is a signal emanating from the dermis of the worm inhibiting this cascade
(i.e., keeping it inactive). In the absence of this signal the cascade is initiated without an
external stimulus. The fate specification process starts when the anchor cell (AC) sends
an inductive signal (IS) to the VPCs. In a VPC receiving a low level of IS, the cascade
is kept inactive and the VPC adopts a 3◦ fate. A high IS causes the cascade to initiate.
The cascade also causes a lateral signal (LS) to be sent to the immediate surrounding
of the cell only after disabling the receptors to this signal in the same cell. Finally, the
full activation of the cascade causes the cell to adopt a 1◦ fate. A medium level of IS
also causes the cascade to initiate, however slower. If the cascade is fully activated,
the cell assumes a 1◦ fate. The perception of the lateral signal sent by a neighbor cell
turns off the cascade and causes the cell to assume a 2◦ fate. By experimenting with the
system (creating mutations and perturbing the system in various ways) certain signals /
receptors can be shut-down or encouraged, and the behavior of the system is observed
in these cases. A model should be able to reproduce the behaviors observed in actual
experiments.

The examples that show the importance of bounded asynchrony in this context are
very similar to the example in Section 1. Consider the following three experiments.
First, in the case that the inhibitory signal is shut-down, all cells initiate the protein
cascade, then some cells manage to stop the cascade in their neighbors. These cells
adopt a 1◦ fate and their neighbors a 2◦ fate. In addition, in repeating this experiment,
different cells assume a 1◦ fate. This suggests that we have to introduce asynchrony
in order to break the symmetry between the cells. In the case that the receptor of the
lateral signal (LS) is shut-down, cells that initiate the cascade do not perceive the LS and
assume a 1◦ fate. This suggests that in the case that the cascade initiates, then at some
point, it should decide that the LS does not arrive. Finally, in a normal (unperturbed)
system it is always the case that if the cascade initiates slowly then it is counteracted by
the LS. However, if we use asynchrony in the unperturbed system the scheduler may
decide to delay the LS arbitrarily long; and the cells in which the cascade is initiated
slowly would assume a 1◦ fate.

It is relatively simple to see that when using bounded asynchrony, a cell that awaits
an LS knows when to stop waiting. It can decide that the LS is not going to arrive at all
and safely continue with its computation. Bounded asynchrony introduces small races
between processes. In our case, cells proceed towards fate acquisition, and a cell that
adopts a 1◦ fate inhibits its neighbors from assuming the same fate. If a cell moves
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slightly faster than its neighbors, it gets to assume a 1◦ fate and inhibits its neighbors
that assume a 2◦ fate. Dually, if a cell moves slightly slower than its neighbors, the
neighbors get to assume the 1◦ fate and inhibit the cell that assumes a 2◦ fate. This
reproduces very nicely the unstable fate patterns (the same cell assumes different fates
in repetitions of the same experiment) observed in experiments involving the inhibitory
signal shut-down.

It is an interesting choice whether to allow processes to move concurrently or not. In-
tuitively, we view concurrent moves of processes as the mirror of the rare event where the
difference between biological processes is so small that it is ignored. We allow processes
to move concurrently, creating situations in which cells proceed synchronously perform-
ing the same sequence of actions (in particular assuming the same fate). In some mu-
tations leading to multiple possible outcomes, we know that some of the outcomes are
rarely observed. When we disallow concurrent moves of processes, these rare observa-
tions disappear from the model, matching our intuition of bounded asynchrony.

3 Bounded Asynchrony

In this section we define the notion of bounded asynchrony. We first define transition
systems and then proceed to the definition of bounded asynchrony.

3.1 Transition Systems

A transition system (TS) D = 〈V, W, Θ, ρ〉 consists of the following components.

– V = {u1, . . . , un} : A finite set of typed state variables over finite domains. We
define a state s to be a type-consistent interpretation of V , assigning to each variable
u ∈ V a value s[u] in its domain. We denote by Σ the set of all states. For an
assertion ϕ, we say that s is a ϕ-state if s |= ϕ.

– W ⊆ V : A set of owned variables. These are the variables that only D may change.
The set W includes the Boolean scheduling variable a.

– Θ : The initial condition. This is an assertion characterizing all the initial states of
the TS. A state is called initial if it satisfies Θ.

– ρ: A transition relation. This is an assertion ρ(V, V ′), relating a state s ∈ Σ to
its D-successor s′ ∈ Σ by referring to both unprimed and primed versions of the
state variables. The transition relation ρ(V, V ′) identifies state s′ as a D-successor
of state s if (s, s′) |= ρ(V, V ′). The transition relation ρ has the form (a �=a′ ∧
ρ′) ∨ (W=W ′), where a is the scheduling variable. In what follows we restrict our
attention to systems that use a scheduling variable.

A run of D is a sequence of states σ : s0, s1, ..., satisfying the requirements of (a) Ini-
tiality: s0 is initial, i.e., s0 |= Θ; (b) Consecution: for every j ≥ 0, the state sj+1 is a
D-successor of the state sj . We denote by runs(D) the set of runs of D. We can divide
the run to transitions where D stutters (i.e., a and all variables in W do not change) and
where D moves (i.e., a flips its value and variables in W may change).

Given systems D1 : 〈V1, W1, Θ1, ρ1〉 and D2 : 〈V2, W2, Θ2, ρ2〉 such that W1 ∩
W2 = ∅, the parallel composition, denoted by D1 ‖D2, is the TS 〈V, W, Θ, ρ〉 where
V = V1 ∪ V2, W = W1 ∪ W2 ∪ {a}, Θ = Θ1 ∧ Θ2, and ρ = ρ1 ∧ ρ2 ∧ ρ′, the variable
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a is the scheduling variable of D1 ‖ D2 and ρ′ is as follows3

ρ′ = (a �= a′) ⇐⇒ [(a1 �= a′
1) ∨ (a2 �= a′

2)]

For more details, we refer the reader to [21].
The projection of a state s on a set V ′ ⊆ V , denoted s⇓

V ′ , is the interpretation of the
variables in V ′ according to their values in s. Projection is generalized to sequences of
states and to sets of sequences of states in the natural way.

3.2 Explicit Scheduler

We define bounded asynchrony by supplying an explicit scheduler that lets all processes
proceed asynchronously, however, does not permit any process to proceed faster than
other processes. Intuitively, the system has one macro-step in which each of the
processes performs one micro-step (or sometimes none), keeping all processes together
(regarding the number of actions). The order of actions between the subprocesses is
completely non-deterministic. Thus, some of the processes may move together and
some one after the other. We start with a scheduler that allows all processes to pro-
ceed according to the same rate. We then explain how to generalize to a scheduler that
implements bounded asynchrony between processes with different rates.

We start by considering a set of processes all working according to the same rate
(without loss of generality the rate is 1). In this case, the resulting behavior is that
every process does one micro-step in every macro-step of the system. Namely, we can
choose a subset of the processes, let them take a move, then continue with the remain-
ing processes until completing one macro-step. We create a TS that schedules actions
accordingly. The scheduler has a Boolean variable bi associated with every process Pi.
A move of Pi is forced when bi changes from false to true. Once all bis are set to true,
they are all set concurrently to false (and no process moves).

More formally, consider n TSs P1, . . ., Pn. For 1 ≤ i ≤ n, let ai be the scheduling
variable of Pi and let (ρi ∧ ai �= a′

i) ∨ (Wi = W ′
i ) be the transition relation of Pi. We

define a scheduler S = 〈V, W, Θ, ρ〉 , where V = W = {b1, . . . , bn} and bi is Boolean
for all 1 ≤ i ≤ n, Θ =

∧n
i=1 bi, and ρ is defined as follows:

ρ =

(

Ω →
n∧

i=1

(bi → b′i) ∧ Ω →
n∧

i=1

b′i

)

(1)

Where Ω =
∨n

i=1 bi denotes the assertion that at least one variable bi is still false.
The bounded asynchronous parallel composition of P1, . . ., Pn according to the rate

1, denoted P 1
1 ‖

ba
· · · ‖

ba
P 1

n , is S ‖ P1 ‖ · · · ‖ Pn with the following additional conjunct
added to the transition:

n∧

i=1

(ai �= a′
i ⇐⇒ (bi ∧ b′i)) (2)

Thus, the scheduling variable of Pi is forced to change when bi is set to true.

3 Notice that, in the case that D1 and D2 have stutter transitions, this composition is neither
synchronous nor asynchronous in the classical sense.
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We consider now the more general case of processes working with general rates. In
this case, we use the same system of Boolean variables but in addition have a counter
that counts the number of steps. A process is allowed to make a move only when its rate
divides the value of the counter. More formally, let the rates of P1, . . ., Pn be t1, . . ., tn.
For 1 ≤ i ≤ n, let ai be the scheduling variable of Pi and let (ρi ∧ ai �= a′

i) ∨ (Wi =
W ′

i ) be the transition relation of Pi. We define a scheduler S = 〈V, W, Θ, ρ〉 with the
following components:

– V = W = {b1, . . . , bn, c}. Forall i we have bi is Boolean, and c ranges over
{1, . . . , lcm(t1, . . . , tn)}, where lcm is the least common multiplier.

– Θ = (c=1) ∧
∧n

i=1 bi.
– Let Ω =

∨n
i=1(bi ∧ (c mod ti=0)) denote the assertion that at least one variable bi

for which the rate ti divides the counter is still false.

ρ = (Ω →
∧n

i=1(bi → b′i) ∧ (c=c′))∧
(
Ω →

∧n
i=1(b

′
i ∧ (c′=c ⊕ 1))

)
∧

(∧n
i=1((bi ∧ (c mod ti �=0)) → bi

′
)
) (3)

The bounded asynchronous parallel composition of P1, . . ., Pn according to rates t1,
. . ., tn, denoted P t1

1 ‖ba · · · ‖ba P tn
n , is S ‖P1 ‖ · · · ‖Pn with the the conjunct in Equa-

tion (2) added to the transition.
We note that there are many possible ways to implement this restriction of the pos-

sible interleavings between processes. Essentially, they all boil down to counting the
number of moves made by each process and allowing / disallowing processes to move
according to the values of counters.

4 Model Checking

Partial Order Reduction (POR) [6] is a technique that takes advantage of the fact that in
asynchronous systems many interleavings lead to the same results. It does this by not
exploring some redundant interleavings, more accurately, by shrinking the set of suc-
cessors of a state while preserving system behavior. Existing algorithms are designed
for (unbounded) asynchronous systems and do not directly adapt to our kind of models
(see below). Although, at the moment, we are unable to suggest POR techniques for
bounded asynchrony, we propose an algorithm that exploits the restricted communica-
tion encountered in systems that model cell-cell interaction, we refer to our algorithm as
communication based reduction, or CBR for short. Like POR, our algorithm searches
only some of the possible interleavings. For every interleaving, our algorithm explores
an interleaving that visits the same states on a macro-step level. We reduce the reach-
able region of the scheduler from exponential size to polynomial size in the number
of processes, and thus we have a direct and important impact on enumerative model
checking. Our approach is applicable to all linear time properties whose validity is pre-
served by restricting attention to macro steps. Much like POR, the next operator cannot
be handled. In particular, every property that relates to a single process (without next),
and Boolean combinations of such properties, retain their validity.
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4.1 Communication Based Reduction

The explicit scheduler S defined in Subsection 3.2 allows all possible interleavings
of processes within a macro-step. We prove that we can construct a new scheduler
that preserves system macro behavior (macro-step level behavior) but allows fewer in-
terleavings. Let P = P 1

1 ‖
ba

· · · ‖
ba

P 1
n be the bounded asynchronous composition of

P1, P2, . . . , Pn according to rate 1 (see Section 3).4

We first formally define a macro-step g of P as a sequence of states g :s=s0, s1, . . . , sm

satisfying:

– g is a subsequence of a run,
– s0 is initial with respect to the scheduler, i.e., s0[bk] holds for all 0 ≤ k ≤ n,
– sm is final with respect to the scheduler, i.e., sm[bk] holds for all 0 ≤ k ≤ n,
– sm is the only final state in g.

A macro-step induces a total and a partial order over the processes of P . The total
order represents the order in which the processes move and we refer to it as the macro-
step’s interleaving. The partial order represents the order in which processes pass mes-
sages (via variables) and we refer to it as the macro-steps channel configuration.

Consider a macro-step g : s = s0, s1, . . . , sm of P . The interleaving of g, denoted
Ig = (<Ig, =Ig), is an order such that: (Pk <Ig Pl) if there exists si in g such that
si[bk]si[bl] and (Pk =Ig Pl) if (Pk �<Ig Pl) ∧ (Pl �<Ig Pk). That is, (Pk <Ig Pl) if Pk

moves before Pl in the interleaving g.
We say that there is a communication channel ckl connecting Pk and Pl if Vk ∩

Vl �= ∅. The neighbor order of g, denoted (<Ng, =Ng), is the partial order defined
as the restriction of the interleaving of g to the neighboring processes. Pk <Ng Pl iff
Pk <Ig Pl and there exists a channel ckl. We define in a similar way =Ng. The channel
configuration of g, denoted (<Cg, =Cg), is the transitive closure of the neighbor order.
That is, Pk <Cg Pl if a change in value of a variable of Pk in interleaving g can be
sensed by Pl in the same interleaving.

Given a macro-step g, a channel ckl may have one of three states: enabled from k to
l, if Pk <Cg Pl, enabled from l to k, if Pl <Cg Pk, disabled, if Pl =Cg Pl. Intuitively,
a channel is enabled if it may propagate a value generated in the current macro-step.

Two interleavings are P-equivalent if they induce the same channel configuration.
Within P , we say that t is a macro-successor of s with respect to interleaving I if

there exists a macro-step g with initial state s, interleaving I and final state t.
The following lemma establishes that two equivalent interleavings have the same set

of macro-successors.

Lemma 1. Consider two P-equivalent interleavings I and I′. If s′ is a macro-successor
of s with respect to I, then s′ is a macro-successor of s with respect to I′.

A scheduler that allows only one of two P-equivalent interleavings preserves system
macro-behavior. It follows that a scheduler that generates only one interleaving per
channel configuration produces a correct macro-state behavior.

Here after we focus on the case of line communication scheme (Vk ∩ Vl = ∅, for all
l /∈ {k − 1, k + 1}, k ∈ (1..n)). This is a common configuration in biological models

4 Here, we only describe the case of processes running at equal rates. The same ideas can be
easily extended to general rates.
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where communication is very local. Extension to 2-dimensional configurations follows
similar ideas.

Let ck denote the channel ck,k+1. In interleaving g, channel ck is enabled-right if
enabled from k to k+1, enabled-left if enabled from k+1 to k, and disabled as before.

Given a channel configuration we construct one interleaving that preserves it. Let
cr0 , cr1 , . . . , crmr be the right-enabled channels. Process Pr0 is oblivious to whatever
happens in the same macro step in processes Pr0+1, . . . , Pn because its communication
with these processes happens through process Pr0+1 which moves after it. Thus, what-
ever actions are performed by processes Pr0+1, . . . , Pn they do not affect the actions of
processes P1, . . . , Pr0 . We may shuffle all the actions of processes P1, . . . , Pr0 to the be-
ginning of the interleaving preserving the right-enabled channel cr0 . The new interleav-
ing starts by handling all processes P1, . . . , Pr0 from right to left. Let cl0 , cl1 , . . . , clml

be the left-enabled channels in 1, . . . , r0. Then, the order of moves is: first processes
Plm+1, . . . , Pr0 , then Plm−1+1, . . . , Plm , and so on until P0, . . . Pl1 .

Next, using the same reasoning, we can handle the processes in the range r0 +
1, . . . , r1 from right to left according to the left-enabled channels, and so on.

The CBR scheduler also uses the Boolean variables b1, . . . , bn, however, the possi-
ble assignments are those where the processes can be partitioned to at most four maxi-
mal groups of consecutive processes that have either moved or not. More formally, we
denote the value of b1, . . . , bn by a sequence of 0 and 1, then the configurations can
be described by the following regular expressions: 0+1+0+, 1+0+, 1+0+1+0+, and
1+. With similar intuition configurations of the form 0+, 0+1+, and 1+0+1+ are also
reachable. For example, in a system with 6 processes the configurations 000111 and
110110 are reachable while the configuration 010101 is not. There are only O(n3) such
reachable states, compared to 2n reachable states in the original scheduler. Fig. 3(a)
compares the number of states and transitions of the two schedulers (none, the sched-
uler described in Section 3 with no reduction vs. CBR, the scheduler described above)
for different number of processes.

4.2 Experimental Evaluation

We compare experimentally the performance of the CBR scheduler with POR methods.
We translate the model in Fig. 1 to Promela and use Spin [17] for a thorough analysis
of the behavior of CBR.

We explain, intuitively, why POR is inappropriate for bounded asynchrony. We as-
sume basic familiarity with POR. First, we find it very important that processes may
move concurrently under bounded asynchrony. POR is developed for ‘classical’ asyn-
chronous systems, thus, it does not allow for processes to move concurrently. Second, a
macro-step in bounded asynchrony is a sequence of at most n local steps, and noticing
that one interleaving is redundant may require exploration of more than 1 lookahead.
Let us further explore this with an example. Suppose that we give up on concurrent
moves and would like to use POR for reasoning about the same bounded asynchronous
system. That is, processes in a line configuration where only neighbor processes may
communicate. In the beginning of a macro-step, all processes are enabled. Communi-
cation between processes implies that we cannot find independent processes (such that
the order of scheduling them does not matter), and we have to explore all possible n
processes as the first process to move. With one process ahead of others, it is clear that
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Fig. 3. Comparing theory and practice

the processes to the left of this process and to its right are no longer connected and the
order between scheduling every process on the left and every process on the right can
be exchanged. However, among the processes on one side, there is still dependency and
the same selection by the scheduler has to be applied recursively. Overall, the number
of possible interleavings to be checked is still exponential in n.5 As exhibited by our
experiments, POR does offer some reduction, however, this cannot be compared to the
order of magnitude saving offered by using communication-based reduction.

We consider the bounded asynchronous composition of n cells in a line configura-
tion. All processes start from the same state. If we disallow concurrent moves, we verify
that there are no adjacent cells that assume fate1 (see Fig. 1). We add a mechanism that
allows us to model concurrent moves using Spin’s interleaving semantics. This mecha-
nism consists of deciding to store the next values of variables in a local copy, allowing
other processes to perform a computation according to the old values, and finally up-
dating the new values. Obviously, this mechanism increases considerably the number
of states in the system. For this case we verify that a cell assumes fate2 only if it has
a neighbor that assumes fate1. We evaluate the CBR scheduler by considering the time
for enumerative model checking and the number of states and transitions explored dur-
ing model checking. We compare the behavior of the CBR scheduler with the basic
scheduler described in Section 3 (simple scheduler) when POR is enabled and disabled.
We perform two sets of experiments, both using Spin. The first set of experiments uses

5 More accurately, the analysis is as follows. The number of interleavings of one process is
f(1) = 1, the number of interleavings of zero processes is f(0) = 0. Generally, f(n) =
Σn

i=1(f(i − 1) + f(n − i)) = 2f(n − 1) + f(n − 1) = 3f(n − 1) and f(n) = 2 · 3n−2.



Bounded Asynchrony: Concurrency for Modeling Cell-Cell Interactions 29

the normal interleaving semantics of Spin. In this case the size of the CBR scheduler is
reduced from O(n3) to O(n2) states. This set of experiments includes running the sim-
ple scheduler without any reductions (none), the simple scheduler with POR (POR),
the CBR scheduler (CBR), and the CBR scheduler with POR (CBR+POR). The sec-
ond set of experiments includes a mechanism that makes Spin mimic the possibility of
concurrent moves. We note that this additional mechanism increases the size of each
process and that in order to communicate with the CBR scheduler each process has ad-
ditional variables. Thus, the experiment is unfair with respect to the CBR scheduler. As
before, this set of experiments includes running the simple scheduler (conc none), sim-
ple scheduler with POR (conc POR), CBR scheduler (conc CBR), and CBR scheduler
with POR (conc CBR+POR). In all experiments, increasing the number of processes
by one leads to memory overflow (10GB). For example, for the experiment with 9
processes, with the simple scheduler where POR is enabled, Spin requires more than
10GB of memory. Fig. 3(b) compares the model-checking time for the different exper-
iments. Figures 3(c) and 3(d) compare the numbers of states and transitions explored
in the first (interleaving semantics) and second (with mechanism mimicking concurrent
moves) sets of experiments, respectively. For better scaling, the range of values covered
by these figures does not include the number of transitions for the none-experiments
in the cases of 7 and 5 processes, respectively. Notice that the size of the system it-
self increases exponentially with the number of processes. The experiments confirm
that POR offers some improvement while the communication-based reduction affords
a significant improvement when compared with the simple scheduler with POR.

The success of CBR in the context of bounded asynchrony suggests that it may be
useful to analyze the communication structure in systems prior to model checking and
to apply specific optimizations based on this analysis. Further research in this direction
is out of the scope of this paper.

5 A Possible Mechanistic Explanation for Bounded Asynchrony

It is rather obvious that a scheduler such as the one we describe in Section 3 does not
exist in real biological systems. While trying to describe biological behavior (of this
type) in high-level requires us to use a notion like bounded asynchrony, it is not clear
what is responsible for this kind of behavior in real systems. Obviously, no centralized
control exists in this case, and there has to be some distributed mechanism that creates
this kind of behavior. In this section we show that bounded asynchrony can be naturally
used to abstract a special kind of distributed real-time mechanism. Thus, in some cases,
similar scheduling mechanisms can be used to construct rough abstractions of real-
time systems. From a biological point of view, it is an interesting challenge to design
biological experiments that will confirm or falsify the hypothesis that internal clock-like
mechanisms are responsible for the emerging behavior of bounded asynchrony.

We suggest clocked transition systems (CTS) as a possible distributed mechanism
that produces bounded asynchrony. The systems we consider use a single clock, perform
actions when this clock reaches a certain value, and reset the clock. We give a high-level
description of the CTS we have in mind.

Consider the CTS Φ depicted in Fig. 4. The CTS has two Boolean variables s and ap

and one clock xp. The values of s correspond to the two states in the figure. The CTS
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s s

1−ε≤xp<1; ap!;

xp=1; ; xp : =0

Fig. 4. CTS for one rate

is allowed to move from s to s when the clock x is in the range [1 − ε, 1), for some ε.
When the CTS moves from s to s, it resets the clock back to 0. The variable ap is the
scheduling variable that this CTS sets; it changes when the system moves from s to s,
and does not change when the system moves from s to s. The possible computations of
this system include the clock progressing until some point in [1 − ε, 1), then the system
makes a transition from s to s while changing ap, then the clock progresses until it is
1, and finally the system makes a transition from s to s. Then, the process repeats itself
when the global time is [2 − ε, 2), [3 − ε, 3), and in general [i − ε, i) for every i.

Consider now the composition of Φ with a TS P that uses ap as its scheduling vari-
able. The composition of the two is a CTS in which moves of the TS P happen in
the time range [i−ε, i) for every i ∈ N. Suppose that we have two TS P and Q with
scheduling variables ap and aq , respectively. We take the composition of two CTS as
above using clocks xp and xq and the variables ap and aq. It follows that P and Q take
approximately one time unit to make one move. However, the exact timing is not set. In
a run of the system combined of the four CTSs the order of actions between P and Q is
not determined. Every possible ordering of the actions is possible. In addition, the tran-
sitions that reset the clocks xp and xq ensure that the two TSs stay coupled. However
long the execution, it cannot be the case that P takes significantly more actions than
Q (in this case more than one). Under appropriate projection, the sequence of actions
taken by the composition of the four systems, is equivalent to the sequence of actions
taken by the bounded-asynchronous composition of P and Q with rate 1.

We now turn to consider the more general scheduler. Consider the CTSs in Fig. 5.
They resemble the simple CTS presented above, however use the bounds of t1 and t2
time units, respectively. Denote the CTS using bound t1 by Φ1, and the CTS using bound
t2 by Φ2. A computation of Φ1 is a sequence of steps where time progresses until the
range [i · t1 − ε, i · t1), then the system takes a step, then the time progresses until i · t1,

s1 s1

t1−ε≤xp<t1; ap!;

xp=t1; ; xp : =0

s2 s2

t2−ε≤xq<t2; aq!;

xq=t2; ; xq : =0

Fig. 5. CTSs for different rates
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and the system takes a step that resets the local clock. A computation of Φ2 is similar,
with t2 replacing t1.

Let P and Q be two TSs with scheduling variables ap and aq as above. Consider the
composition of P and Q with Φ1 and Φ2. It follows that P moves every t1 time units and
Q every t2 time units6. Every t1 time units P performs an action, and every t2 time units
Q performs an action. At time t such that both t1 and t2 divide t, both P and Q make
moves, however, the order between P and Q is not determined. We can show that under
appropriate projection, the sequence of actions taken by the composition of the four
systems, is equivalent to the sequence of actions taken by the bounded-asynchronous
composition of P and Q with rates t1 and t2, respectively.

We note that the CTSs have their resets set at exact time points, suggesting that a
composition of such systems requires a central clock. We can still maintain ‘bounded-
asynchronous’ behavior if the reset occurs concurrently with the system, however, main-
taining ε small enough and restricting the number of steps made by the system. For
example, if ε is 1/100, then regardless of the exact behavior, the first 98 macro-steps still
respect bounded asynchrony. It follows, that unsynchronized local clocks augmented by
frequent enough synchronizations would lead to the exact same behavior. It is an inter-
esting question whether similar ideas can be used for the abstraction of real time and
probabilistic systems.
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Abstract. Stochastic models of biological networks properly take the
randomness of molecular dynamics in living cells into account. Numeri-
cal solution approaches inspired by computational methods from applied
probability can efficiently yield accurate results and have significant ad-
vantages compared to stochastic simulation. Examples for the success of
non-simulative numerical analysis techniques in systems biology confirm
the enormous potential.
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1 Introduction

In order to gain a system-level understanding of intra- and intercellular dynam-
ics, mathematical modeling and efficient computational analysis of biological
networks, also referred to as pathways, is a primary scope of systems biology.
Just like artificial or technical systems, living systems consist of various mutu-
ally related interacting components and are enormously complex. However, the
achievements in genomics, proteomics, cell and molecular biology today provide
a wealth of data that not only yields the necessary information for suitable mod-
eling but also facilitates the choice of an appropriate abstraction level. From this
data, components forming an “isolated” subsystem can be identified leading to
an indispensable and necessary reduction of complexity.

As biological systems are constituted by coupled chemical reactions on the
molecular level, chemical reactions are essential for all modeling approaches. The
fundamental rules are given by stoichiometric equations defining which molec-
ular species may react in order to result in a certain product and how many
molecules are involved in the reaction. Quantitative timing aspects are specified
by reaction rates assigned to each reaction. Models may be state-continuous or
state-discrete and their dynamical behavior may be deterministic or stochastic
which is reflected by the most popular instances of deterministic and stochastic
reaction kinetics, respectively. In both cases, it is assumed that the system is
well stirred and thermally equilibrated, meaning that a well stirred mixture of
molecules inside some fixed volume interact at constant temperature. That is,
the system is spatially homogeneous such that the concentration or the number
of molecules do not depend on positions in space.
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In deterministic reaction kinetics based on the generalized law of mass ac-
tions, the system state at any time is given by the concentrations (measured
in mol per liter) of each molecular species. Expressing the system dynamics in
terms of deterministic rate equations yields a system of ordinary differential
equations (ODEs) for the concentrations. This approach assumes continuous,
deterministic changes in concentrations of molecular species and can be suitable
for reaction networks involving large populations as, for instance, in metabolic
pathways but it neither properly models the discreteness of molecular quantities
nor the inherent randomness in chemical reactions. In particular, for gene ex-
pression and signal transduction processes it has been extensively demonstrated
that stochastic noise plays a major role and should be taken into account. For
example, consider a simple bistable genetic toggle switch constructed from re-
pressible promoters. In reality, the system can end up in two different stable
states and for most initial configurations both states are possible, that is they
have a positive probability that should not be neglected. But the solution of any
deterministic reaction rate model yields that in the time limit the system is in
exactly one of these two states ignoring the other one completely. Many more
examples and studies elucidate the stochastic nature of biological systems such
that it is nowadays evident and stochastic models are well established in systems
biology [1,5,17,18,30,33,34,38,44,46,47,49].

In the stochastic approach that we focus on, the system state at any time is
given by the number of molecules of each species and the system is modeled by
a continuous-time Markov chain (CTMC). The system dynamics are described
by a system of ODEs called the chemical master equation (CME). Stochastic
simulation is in widespread use for analyzing stochastic models of biological
networks. It can be applied to arbitrarily large models but it also has a cou-
ple of major drawbacks. Stochastic simulation is computationally expensive and
can only provide statistical estimates. Rather than directly solving the CME,
trajectories (sample paths) of the CTMC are generated. Stochastically exact
trajectory generation, often referred to as the Gillespie algorithm in the context
of chemical reactions, is exceedingly slow. Even with approximate methods for
accelerated trajectory generation a large number of trajectories is required in
order to obtain reliable and meaningful results with acceptable statistical accu-
racy. Hence, if efficient numerical (non-simulative) solutions are possible they
should be clearly preferred as they do not suffer from statistical inaccuracies.
Standard techniques for numerically solving systems of ODEs become infeasible
in case of very large state spaces but it is intuitively clear that exploiting the
stochastic interpretation and the specific structure of CTMCs might be helpful.

Computational probability is concerned with efficient methods that are specif-
ically designed for stochastic models. In particular, various sophisticated tech-
niques for the numerical solution of Markov chains have been developed [24,25,45].
However, they are not yet prevalent for solving stochastic models of coupled chem-
ical reactions. In this paper, we demonstrate that they can be successfully used for
solving stochastic models of biological systems.
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Based on previous work, we present two examples where techniques inspired
by methods originally developed for computer systems performance evaluation
have been applied to chemically reacting systems. The first example illustrates
the model reduction approach of [11]. As the second example, we describe a
structured representation of a genetic regulatory network as another promising
application of computational probability methods to systems biology, which has
been recently proposed in [50].

The remainder of this paper is organized as follows. In Section 2 we intro-
duce stochastic chemical reaction kinetics, describe the corresponding Markov-
ian models and uniformization as a numerical solution approach. The reduction
technique for stiff models and the structured representation of a gene feedback
loop are presented in Sections 3 and 4, respectively. Finally, Section 5 concludes
the paper and outlines directions of further research.

2 Stochastic Chemical Reaction Kinetics

Stochastic approaches to chemical reaction kinetics via Markovian models can be
traced back to the study of autocatalytic reactions in the 1940s [16]. In the 1950s,
[43] considered chain reactions and some types of coupled reactions, and [2]
provided a large body of theory resulting in a series of papers on topics covering
sequences of unimolecular and bimolecular reactions, reaction rate constants,
and several applications. These early works, though using a different terminology,
already implicitly included the CME. Detailed reviews and many more historical
references can be found in [4,35,29]. It was also recognized quite early that
in the thermodynamic limit, when the number of molecules and the volume
approach infinity but the concentrations remain finite, the Markovian and the
deterministic approach are equivalent [31,37]. In the 1970s, [21,22] provided a
physical justification of Markovian models of coupled chemical reactions, which
was later rigorously derived in [23] yielding that it is evidently in accordance
with the theory of thermodynamics.

2.1 Model Description

We consider N ∈ N molecular species S1, S2, . . . , SN and M ∈ N reaction types
R1, R2, . . . , RM . Each reaction Rm, 1 ≤ m ≤ M is defined by a reaction equation

�
(m)
1 S1 + �

(m)
2 S2 + . . . + �

(m)
N SN

cm−−−→ h
(m)
1 S1 + h

(m)
2 S2 + . . . + h

(m)
N SN . (1)

The stoichiometric coefficients �
(m)
1 , �

(m)
2 , . . . , �

(m)
N ∈ N describe for each species

how many molecules are consumed if a reaction of type Rm occurs. Similarly,
the stoichiometric coefficients h

(m)
1 , . . . , h

(m)
N ∈ N describe how many molecules

of each species are produced by Rm. The reaction rate constant cm ∈ R>0
determines the “speed” of Rm as explained below. Note that the population of
species Si is unaffected by Rm if �

(m)
i − h

(m)
i = 0.
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The stochastic process that represents the temporal evolution of the species’
populations is given by a family

(
X(t)

)
t≥0 of random vectors

X(t) =
(
X1(t), X2(t), . . . , XN (t)

)

taking values in a discrete set X ⊂ N
N . The random variable Xi(t), 1 ≤ i ≤ N

describes the number of molecules of species Si at time instant t. We fix the
initial conditions of the process by defining that P

(
X(0) = x0

)
= 1 for an initial

population vector x0 ∈ X . The transient state probability that at time t ≥ 0 the
system is in state x = (x1, x2, . . . , xN ), given X(0) = x0, is denoted by

p(t)(x) = P
(
X(t) = x | X(0) = x0

)
. (2)

State changes are triggered by chemical reactions. For an infinitesimal time in-
terval [t, t + dt)

P
(
Rm occurs in [t, t + dt) | X(t) = x

)
= αm(x) · dt (3)

where αm : X → R≥0 is called the propensity function of Rm. This probability is
proportional to the number of distinct combinations of Rm’s reactants. Hence,
αm(x) computes as

αm(x) = cm ·
N∏

j=1

(
xj

�
(m)
j

)

. (4)

The probability in (3) only depends on the length of the time interval which
means that the propensity functions are time-independent. Besides, the next
state in the system’s time evolution only depends on the current state, and nei-
ther on the specific time nor on the history of reactions that led to the current
state. Hence, the system is in fact modeled as a (time-homogeneous, conserva-
tive) CTMC (X(t))t≥0 with N -dimensional state space X ⊆ N

N . This gives rise
to a state-transition graph representation in which outgoing transitions of x are
labeled by transition rates αm(x). The successor state according to a transition
from x triggered by a reaction of type Rm is state x + vm where vector vm

equals the m-th row of the stoichiometric matrix V ∈ Z
M×N , defined as follows:

if Rm is given by (1) the m-th row of V is such that the i-th entry contains the
difference of the number of Si molecules after a reaction of type Rm occured,
i.e. vmi = h

(m)
i − �

(m)
i .

2.2 Chemical Master Equation and Kolmogorov Differential
Equations

The system dynamics in terms of the state probabilities’ time derivatives are
given by the chemical master equation (CME)

∂p(t)(x)
∂t

=
M∑

m=1

(
αm(x − vm)p(t)(x − vm) − αm(x)p(t)(x)

)
. (5)
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Terminology and notation as introduced here and commonly used in systems
biology as well as in chemistry and physics is quite different from that in mathe-
matics, computer science, and engineering. In particular, it is a purely functional
specification as opposed to an algebraic matrix specification. Consequently, ex-
pressions governing the system dynamics usually adhere to one of these specifi-
cations. At a first glance they may appear to be rather different but of course
they are equivalent. More specifically, as we will see below the chemical master
equation is one way to write the Kolmogorov differential equations.

In order to recognize the equivalence of the functional specification and a
matrix specification note that the multidimensional discrete state space can be
mapped to the set N of nonnegative integers such that each state x ∈ X is
uniquely assigned to an integer i ∈ N. The probability that a transition from
state i ∈ N to state j ∈ N occurs within a time interval of length h ≥ 0 is de-
noted by pij(h), and correspondingly P (h) = (pij(h))i,j∈N is a stochastic matrix,
where P (0) equals the unit matrix I, since no state transitions occur within a
time interval of length zero. It is well known (cf. [7,29]) that a CTMC is uniquely
defined by an initial probability distribution and a transition rate matrix, also
referred to as infinitesimal generator matrix, Q = (qij)i,j∈N consisting of transi-
tion rates qij where Q is the derivative at 0 of the matrix function h �→ P (h).
The relation of each P (h) to Q is given by P (h) = exp(Qh). In that way Q
generates the transition probability matrices by a matrix exponential function
which is basically defined as an infinite power series. Hence, all information on
transition probabilities is covered by the single matrix Q. In terms of Q the
Kolmogorov global differential equations can be expressed by

∂p(t)

∂t
= p(t)Q (6)

where p(t) = (p(t)
1 , p

(t)
2 , . . .) denotes the vector of the transient state probabilities

corresponding to Equation (2). Explicitly writing each row of Equation (6) yields

∂p
(t)
i

∂t
=

∑

j:j �=i

p
(t)
j qji −

∑

j:j �=i

p
(t)
i qij =

∑

j:j �=i

(
p
(t)
j qji − p

(t)
i qij

)
(7)

from which the equivalence to the CME is now easily seen by interpreting i ∈ N

as the number assigned to state x ∈ X , i.e. p
(t)
i = p(t)(x), qij = αm(x) if j is

the number assigned to state x + vm, and qji = αm(x − vm) if j is the number
assigned to state x − vm.

2.3 Uniformization

A general solution of Equation (6) is [15,25,45]

p(t) = p(0) · P (t) = p(0) · exp(Qt) = p(0) ·
∞∑

k=0

(Qt)k

k!
. (8)
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The infinite sum includes matrix exponentials and its computation is numer-
ically unstable as Q contains strictly positive and negative entries leading to
severe round-off errors [36]. As already mentioned in the introduction, different
methods exist to compute the vector p(t). The most common one is the uni-
formization method which is based on the Taylor series expansion of the matrix
exponential. It goes back to Jensen [28] and is thus sometimes referred to as
Jensen’s method. It is also known as randomization or discrete-time conversion
and has been applied to computing transient as well as steady-state solutions
for Markov chains, see for example [15,26,27,45]. The basic idea is to define an
associated discrete-time Markov chain (DTMC) that behaves equivalently to the
CTMC (X(t))t≥0 in the sense that it is stochastically identical. More specifically,
the CTMC is represented as a DTMC where the times are implicitly driven by
a Poisson process. We briefly present it as it will be used later on.

Define a uniformization rate λ such that

λ ≥ sup
1≤i≤n

∑

j:j �=i

qij

and construct the stochastic matrix

P = I +
1
λ

Q

which is the transition matrix of the associated DTMC. The matrix P k contains
the k-step transition probabilities. Thus, w(k) := p(0)P k is the vector of the
state probabilities after k steps in the DTMC. The probability of k steps within
the time interval [0, t) has a Poisson distribution with parameter λt, i.e.

P
(
k steps until time t

)
= e−λt (λt)k

k!
. (9)

Now, the solution of the transient state probabilities in Equation (8) can be
rewritten (cf. [15,25,45]) as

p(t) = p(0) ·
∞∑

k=0

e−λt (λt)k

k!
P k =

∞∑

k=0

e−λt (λt)k

k!
· w(k). (10)

Equation (10) has nice properties compared to (8). There are no negative sum-
mands involved as P is a stochastic matrix and λ > 0. Moreover, w(k) can be
computed recursively by

w(0) = p(0), w(j) = w(j−1) · P, j ∈ {1, 2, . . .}.

If P is sparse, w(k) can be calculated efficiently even if the size n of the state
space is large. Note that it is possible to obtain p(t) via Equation (10) for several
values of t simultaneously where the w(k) are only computed once. According
to [20] left and right summation bounds L and R can be obtained such that the
truncation error

p(t) − p̂(t) :=
( ∞∑

k=0

e−λt (λt)k

k!
w(k)

)
−

( R∑

k=L

e−λt (λt)k

k!
w(k)

)
< ε
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can be a priori bounded by a predefined ε > 0. Thus, p(t) can be approximated
arbitrarily accurate as long as the required number of summands is not extremely
large, and diverse properties of interest can be obtained from p(t). In many cases,
the uniformization approach is superior to other numerical analysis techniques.

In particular, uniformization can be applied to networks of coupled chemical
reactions. For example, [41,42] formulated it in terms of the functional represen-
tation and also presented a discrete-time version of the chemical master equation.
However, a corresponding stochastic simulation algorithm was presented rather
than applying uniformization for non-simulative numerical analysis.

3 Numerical Aggregation for a Stiff Enzymatic Reaction

For both deterministic and stochastic models, the mathematical property of
stiffness renders system analysis difficult and often even impossible with tra-
ditional methods. Stiffness arises whenever the components of the underlying
system act on time scales that differ by several orders of magnitude which is
typically the case for biological systems. Standard numerical methods as well as
stochastic simulation perform extremely ineffecient in the presence of stiffness
and advanced solution approaches are required.

We consider the enzyme-catalyzed substrate conversion

R1 : E + S
c1−−→ C

R2 : C
c2−−→ E + S

R3 : C
c3−−→ E + P

(11)

of a substrate S into a product P via an enzyme-substrate complex C, catalyzed
(accelerated) by an enzyme E. Usually, the initial number of substrate molecules
is large compared to the small enzyme population. Typical measures of interest
are the mean and the variance of the time that is needed until all substrate
molecules are transformed into product molecules. If reactions of type R2 are
much faster than those of type R3, the reaction set becomes stiff. Here, this is
the case for c2 	 c3. In general, stiffness can not always be identified by simply
inspecting the rate constants cm but one has to inspect the transition rates, that
is the state dependent propensity functions αm.

In [11] a numerical aggregation algorithm (NAA) for the enzyme-catalyzed
substrate conversion is proposed. The idea is that if the stiffness condition is valid
an appropriately modified adaptation of the aggregation technique in [6] yields an
accurate approximation of the desired measures. The method essentially consists
of two steps:

1. The state space of the CTMC is partitioned into subsets of states, called
aggregates, such that within an aggregate the states are connected via tran-
sitions of reaction types R1 and R2 only. These subsets, considered in isola-
tion, form the “fast” part of the model and are “almost in steady-state”. The
relative percentage of the time spent in each state is computed in the limit as
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time approaches infinity. Based on these probabilities an aggregated model
is constructed in which each aggregate forms a “macro state”. The transi-
tion rates between the macro states are the weighted sums of the individual
cumulative transition rates in the original model.

2. As each subset forms a macro state, the aggregated model is much smaller
than the original one. Moreover, stiffness is eliminated because all reactions
in the aggregated model occur at the same time scale. Hence, uniformization
can be applied to the aggregated model resulting in an approximation for
the original one. Since for the enzyme-catalyzed substrate conversion only
transitions via R3 remain, the model has the structure of a simple birth
process. Techniques that exploit this simple structure yield accurate results
very efficiently.

Let x0(E) and x0(S) be the initial population size of the species E and S,
respectively, and n = x0(S) + 1. Aggregate Ak, 1 ≤ k ≤ n is then given by

Ak =
{
(xE , xS , xC , xP ) | xP = k − 1, xE + xC = x0(E), xS + xC + xP = x0(S)

}
.

Thus, transitions between different aggregates are triggered by reactions of type
R3 whereas each transition within an aggregate corresponds to a reaction of type
R1 or type R2. Let Q(k) be the submatrix of Q which contains the entries of the
elements of Ak, that is Q(k) is the generator matrix of the CTMC with state
space Ak. The steady-state distribution of Ak is obtained as the unique solution
of the linear system

π(k)Q(k) = 0,
∑

i∈Ak

π
(k)
i = 1.

The aggregated CTMC has state space {A1, . . . , An}, that is the states are sub-
sets of the state space of the original CTMC. The transition rate between macro
states Ak and Ak′ , k 
= k′ is defined as

q̂kk′ :=
∑

i∈Ak

π
(k)
i

∑

j∈Ak′

qij .

By setting

q̂ii := −
n∑

j=1,j �=i

q̂ij and Q̂ :=
(
q̂ij

)
1≤i,j≤n

a smaller CTMC is obtained for which transient state probabilities are calculated
using uniformization.

Experimental results show that for stiff systems, the NAA is very accurate
and fast. For example, comparisons with an approximate stochastic simulation
algorithm that was specifically designed for stiff systems, the slow-scale stochas-
tic simulation algorithm [12,13], show that the NAA is at least ten times faster
and even up to more than 104 times faster in parameter regions where only a
small number of enzyme molecules is present.
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4 Structured Representation of a Gene Regulatory
Network

As outlined in Section 2, besides the functional description in terms of propensi-
ties, the underlying CTMC of a biochemical network can be represented by the
corresponding generator matrix Q and the initial distribution. Various numerical
solution algorithms are based on an explicit matrix description which requires
the construction of Q in order to apply these methods. Unfortunately, the size of
Q grows exponentially in the number of involved species which means that the
analysis suffers from the so-called state space explosion problem. The number of
non-zero entries in Q might be so large that the computer storage capacity is
exceeded.

In this section, we give a structured Kronecker-based representation that de-
scribes the underlying CTMC of a biochemical network. The generator matrix is
expressed in a modular way such that the state space explosion problem is cir-
cumvented. In general, the Kronecker representation can be used to model very
large CTMCs whose state space is in the order of billions. The basis is a gener-
alized tensor algebra with a Kronecker product operation [48]. In the context of
biochemical networks, it is well suited for expressing reaction rates.

The Kronecker product of two matrices A = (aij) ∈ R
n1×m1 and B = (bkl) ∈

R
n2×m2 is defined as C = A ⊗ B, where C is an n1 × m1 block matrix whose

(i, j) block is the n2 × m2 matrix aijB. For illustration, consider A ∈ R
2×2 and

B ∈ R
3×3. Their Kronecker product C = A ⊗ B ∈ R

6×6 is given by

C =
(

a11 B a12 B

a21 B a22 B

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a11b31 a11b32 a11b33 a12b31 a12b32 a12b33

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

a21b31 a21b32 a21b33 a22b31 a22b32 a22b33

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The Kronecker product is associative and distributive with respect to matrix
addition. A variety of numerical algorithms for Kronecker-based representations
of CTMCs exist and are implemented in tools like PEPS [3], APNN [9] and
SMART [14].

Note that the Kronecker representation can be generated from high-level
modeling paradigms for Markov chains. In particular for stochastic automata
networks (SANs) [32,39,40], it is well suited. A SAN consists of a number of in-
teracting stochastic automata that are described by local state-transition graphs.
An automaton takes local transitions independently of the other automata
whereas for synchronizing transitions two or more automata change their state.
In the Kronecker representation, this is directly reflected by local matrices that
are combined by Kronecker operations. For more information on SANs we refer
to [32,39,40]. Here, we focus on the Kronecker representation.

Consider a reaction network with N ∈ N molecular species S1, S2, . . . , SN and
M ∈ N reaction types R1, R2, . . . , RM . Let Ni ∈ N be the maximum number of
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molecules of species Si and let reaction type Rm be given by (1). The idea is to
represent the generator matrix Q implicitly as a Kronecker product of (smaller)
component matrices. Define the vector

u(m,i) =
((

0
�
(m)
i

)

,

(
1

�
(m)
i

)

, . . . ,

(
Ni

�
(m)
i

))

∈ N
Ni+1.

whose entries are the binomial coefficients
( j

�
(m)
i

)
, 0 ≤ j ≤ Ni. These are the

factors by which Si contributes to the calculation of the transition rate, that is
the propensity function αm according to (4). If �

(m)
i = 0, the transition rate of

the reaction is independent of the current population of Si, i.e. the contributed
multiplicative factor is one.

Given u(m,i), a matrix U (m,i) that corresponds to reaction type Rm and
species Si is constructed as follows: the vector u(m,i) appears at the vmi-th
diagonal (upper diagonal if vmi > 0 and lower diagonal otherwise) of U (m,i) if
reaction Rm increases (decreases) the population of Si by vmi (the entry in the
stoichiometric matrix V ). All remaining entries of U (m,i) are zero. Note that
we count the positions of the diagonals such that u(m,i) appears at the main
diagonal of U (m,i) if vmi = 0.

Consider a two-gene positive feedback loop with M = 8 reactions involving
N = 4 chemical species. With k, r ∈ {1, 2}, k 
= r the reactions are given by1

Rtcr
k : Protr

ctcr
k−−−→ mRNAk + Protr (transcription of mRNAk)

Rtsl
r : mRNAr

ctsl
r−−→ mRNAr + Protr (translation of Protr)

Rmdeg
r : mRNAr

cmdeg
r−−−−→ ∅ (degradation of mRNAr)

Rpdeg
r : Protr

cpdeg
r−−−→ ∅ (degradation of Protr)

(12)

This set of reactions describes a small regulatory network controlling the tran-
scription of two genes into mRNA and the translation of the two corresponding
types of mRNA into proteins. The transcription of gene 1 depends on the pop-
ulation of promoter Prot2 (reaction Rtcr

1 ). The Prot2 molecules, in turn, are
translation products of mRNA2 (Rtsl

2 ) and Prot1 results from the translation
of mRNA1 (Rtsl

1 ). The Prot1 molecules act as regulatory proteins for the tran-
scription of gene 2 (Rtcr

2 ). Molecules degrade according to the reactions Rmdeg
r

and Rpdeg
r . For transcription of mRNAk, that is Rm = Rtcr

k , Si = mRNAk and
Sj = Protr we have the matrices

U (m,i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 . . . 0
0 0 1 . . . 0

0 0 0
. . .

...
...

...
. . . . . . 1

0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, U (m,j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0
0 1 0 . . . 0

0 0 2
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 Nj

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

1 The symbol ∅ on the right-hand indicates that the number of products is zero.
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We obtain the same matrices for the translation, i.e. Si = Protk, Rm = Rtsl
k and

Sj = mRNAk. Degradation of mRNAk or Protk yields

U (m,i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0
1 0 0 . . . 0

0 2 0
. . .

...
...

...
. . . . . . 0

0 0 . . . Nj 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that the vector u(m,i) is truncated if it does not appear on the main diagonal
as U (m,i) is always of size Ni + 1. We set D(m,i) = diag(U (m,i)eT ) where e is
a unit row vector of appropriate size and the operator diag(u) constructs a
diagonal matrix from the vector u, i.e. u appears on the main diagonal. Now,
the generator matrix Q of the CTMC can be expressed as

Q =
M∑

m=1

cm

(
N⊗

i=1

U (m,i) −
N⊗

i=1

D(m,i)

)

=
M∑

m=1

cm

(
N⊗

i=1

U (m,i) − D

)

(13)

where ⊗ denotes the Kronecker product operation. Note that subtracting the
D(m,i) ensures that the row sums of Q are zero. Moreover, their Kronecker
product D is also a diagonal matrix. The matrix Q agrees with the generator
matrix defined in Section 2 up to the ordering of the states. The number of
factors used in the Kronecker representation of a biochemical network grows only
linearly in the number of involved species and reactions and is independent of the
population size. The sizes of the individual matrices depend on the maximum
numbers of molecules of the participating molecular species.

The Kronecker representation of Q can be exploited for analysis if the uni-
formization method is applied. From (10) we have

p(t) =
∞∑

k=0

e−λt (λt)k

k!
· w(k)

where w(0) = p(0) and for j ∈ {1, 2, . . .}

w(j) = w(j−1) · P

= w(j−1) · (I + 1
λQ)

= w(j−1) + 1
λw(j−1) · Q

(13)
= w(j−1) + 1

λ

M∑

m=1
cm w(j−1) ·

(
N⊗

i=1
U (m,i) − D

)

.

Efficient techniques exist for vector matrix multiplications if the matrix has
Kronecker representation, see, for instance, [8,19] and the references therein.
Most of them exploit the fact that usually the matrices U (m,i) are sparse which
is in particular the case if the system under study is a network of biochemical
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reactions. Thus, even in the case of a large state space numerical techniques
based on the matrix representation Q can be applied. The CTMC described by
Q may contain many states unreachable from the initial one. We refer to [10]
for an efficient way to determine the subset of reachable states in the potential
state space.

As future work, we plan to carry out case studies based on realistic biological
examples, such as the virus model of [44], in order to emphasize the feasibility
and the practical relevance of the Kronecker approach.

5 Conclusion

The stochastic modeling approach provides significant insights into biochemical
pathways. The analysis of the underlying Markov chain via standard ODE solvers
or stochastic simulation is computationally demanding and often becomes in-
tractable for complex models. In particular, large state spaces and multiple time
scales or stiffness pose grand challenges. We suggest to built on efficient compu-
tational probability methods that were originally developed for other application
domains, e.g., computer systems performance evaluation.

The numerical aggregation algorithm for the enzyme-catalyzed substrate con-
version exploits model reduction techniques such that both largeness and stiff-
ness are removed in the aggregated model. Experimental results show that the
algorithm is superior to other approaches with respect to time complexity and
accuracy. Further research includes the generalization of the algorithm such that
it can be applied to arbitrary networks of biochemical reactions.

The structured representation of the genetic feedback loop via Kronecker al-
gebra provides a modular design process which is adequate for abstraction pur-
poses. The elegant and compact matrix representation keeps track of the network
structure and facilitates numerical analysis algorithms that overcome the state
space explosion problem with efficient storage mechanisms. Future work in this
area includes more case studies for large biological networks as well as the use
of already existing tools for the analysis of Kronecker-based representations.

Hence, computational probability is a promising approach to tackle some of
the major problems in the analysis of stochastic models in systems biology. First
steps were already successful and demonstrated the great potential. Ongoing re-
search projects are likely to contribute substantial progress in advancing systems
biology.
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Abstract. Petri nets are a widely used formalism to qualitatively model
concurrent systems such as a biological cell. We present techniques for
modelling biological processes as Petri nets for further analyses and in-
silico experiments. Instead of extending the formalism with ,,colours” or
rates, as is most often done, we focus on preserving the simplicity of
the formalism and developing an execution semantics which resembles
biology – we apply a principle of maximal parallelism and introduce
the novel concept of bounded execution with overshooting. A number
of modelling solutions are demonstrated using the example of the well-
studied C. elegans vulval development process. To date our model is still
under development, but first results, based on Monte Carlo simulations,
are promising.

1 Introduction

Systems biology [1] is a relatively new field of study which focuses on interactions
within and between biological systems. The knowledge about those systems
typically is presented in the form of descriptive text, illustrated with diagrams
that are often beset with arrows, colourful components and comments. It is not
only difficult to locate a particular piece of information, but also to understand
it, as there are often unknowns and ambiguities in the description. This problem
is inevitable when representing dynamical and concurrent processes in a living
cell as flat diagrams.

Furthermore, the amount of biological knowledge is increasing, and has
reached the point where the help of machines is becoming indispensable. What
is more, in vitro (laboratory) experiments tend to be expensive and slow
and are often infeasible, whereas in silico (computer) experiments could be
cheaper, faster and better reproducible. Realistic executable models of biological
systems can be used for predictions, preparation and elimination of unnecessary,
dangerous or unethical laboratory experiments. This approach would also be
applicable, for example, in drug design and testing [2].
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c© Springer-Verlag Berlin Heidelberg 2008



Design Issues for Qualitative Modelling of Biological Cells with Petri Nets 49

Therefore, one of the major questions systems biology is currently trying
to answer, is how to represent biological knowledge concisely, unambiguously,
without omissions, with well-localised gaps and in a machine-processable way.

There are two typical approaches to cell modelling: the first uses systems of
differential equations and the second uses stochastic simulations, see for example
[3, 4, 5]. They are both quantitative and highly dependent on kinetic constants
or reaction rates which are approximate (Sackmann et al. [6] claim that often
only 30-50% of data is known). Differential equations work only in cases when
many molecules of each protein species are present, and stochastic simulation
works only for ,,well-stirred” chemical soups. However, biological cells are far
from being ,,well-stirred” and examples abound where small amounts, or even
single molecules, are crucial to biological processes. In contract, cell interaction
data are available in large amounts [6,7]. Clearly, there is a need for qualitative
rather than quantitative modelling.

Petri nets are a well-established technique for modelling concurrent systems.
They are simple and powerful in expressing biological knowledge, e.g. binding,
signalling, concurrency, nondeterminism, timing. They are extensible and have
intuitive visualisation.

As a model organism we picked a well-described and relatively uncomplicated
worm, C. elegans, and the first phase of its well-studied vulval development
process [8]. Additionally, this process has discrete output, which makes it easier
to verify correctness of a model.

We started with a well-known basic approach to modelling biological systems
using Petri nets, described, for example, in [9]. Throughout the development
of our model, we set the following three objectives. (1) Resemble biology. (2)
Keep the model homogeneous and simple. (3) Comply to the standard Petri net
theory. (4) Keep the model qualitative while trying to reproduce the results of
laboratory experiments. These goals quite often conflict and it was necessary
to find a consensus between them. As a result, we place our work in-between
qualitative and quantitative approaches.

In this paper we present our experiences in modelling the C. elegans vulval
development process using Petri nets. Instead of extending the formalism with
,,colours” or rates, as is typically done, we focused on preserving the simplicity of
the formalism and changing the execution semantics. Rather than the traditional
interleaving execution, we use the maximal parallelism principle and introduce
a novel concept of bounded execution with overshooting.

Our network is considerably larger than those typically published in papers
on modelling of biological cells using Petri nets – it has about 300 places and 300
transitions and approximately 950 edges. Our model is still under development,
but first results, based on Monte Carlo simulations, are promising. So far we are
able to correctly simulate 46 out of 48 experiments from [10].

The paper is organised as follows. Section 2 sketches the biological process
that we are modelling. Section 3 introduces general Petri net theory. Section
4 presents biological modelling methods and execution semantics. Section 5
describes good practices and techniques in modelling using Petri nets. Section
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6 identifies problems we encountered while working on the model. Section 7
overviews related work. Section 8 discusses current results. Section 9 gives
conclusions and ideas about continuing this work in future.

2 C. elegans Vulval Development

C. elegans is a well-studied nematode (type of worm), living in soil and about
1 mm long. It consists of about 1000 cells which are all numbered, and their
destinies at all stages of the development of the worm are well-described. Six
of those cells are called Vulval Precursor Cells and numbered P3.p, P4.p, P5.p,
P6.p, P7.p and P8.p. Those cells form a line. They participate in the process of
vulval development, depicted in Fig. 1.

P3.p P4.p P5.p P6.p P7.p P8.p

Fig. 1. Cells taking part in vulval development process

Instructions providing all the information necessary for a living cell to grow
and function are present in the form of DNA molecules. The DNA contains
a number of genes which are templates for the production of proteins, the cell
building blocks. We say that a gene is wild-type (on) when the protein is normally
produced. It is knocked-out (off) when it is not produced, and it is over-expressed
when it is produced in excess. Proteins present in a cell may have two forms,
active and inactive. Typically, the protein must first be activated to participate in
reactions. Proteins may also influence other proteins or themselves. For instance,
processes of increasing or decreasing the production of a protein are called,
respectively, up- or downregulation. Certain proteins and their interactions are
grouped as pathways, ,,packages” with a coarse-grained function in a living cell.

The vulval development process consists of two interacting pathways. Their
significant genes are lin-12 and mpk-1. In this process, all cells have to arrive
at a decision which fate to choose: 1, 2 or 3. The cells that choose first fate
will divide and create the actual vulva. The cells that choose the second fate
become supporters of the vulva. The cells that choose the third fate will fuse
with the hypodermis, the ,,skin” of the worm. Before the process starts, all cells
are the same. Provided that all genes are produced normally, the process works
as follows (see Fig. 2). A special cell, called the Anchor Cell (AC), comes near
cell P6.p and induces a signal leading to first fate in P6.p. Then P6.p sends
signals to its sides (lateral signals) resulting in the second fate taken by P5.p
and P7.p. Remaining cells do not get any signal and eventually choose the third
fate. In case the genes were not produced normally, many other possible patterns
of fates can occur. Note that this is an extremely simplistic description. This and
much more information about C. elegans can be found in the Wormbook [8].
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33 3 2 21

? ? ?? ? ?

P3.p P4.p P5.p P6.p P7.p P8.p

AC

Fig. 2. First stage of C. elegans vulval development process. The resulting wild-type
fate pattern is (3 3 2 1 2 3).

In this paper we use the following convention: genes are written in lowercase
and corresponding proteins in uppercase. The suffix PRO, for example in
LIN-12 PRO, denotes the production reaction and suffix DOWN denotes down-
regulation. A protein name containing cell number, for example LIN-12/P6.p,
denotes protein concentration within this particular cell.

3 Petri Nets

Petri nets [11, 12] are a formalism geared towards modelling and analysis
of concurrent systems. A Place-Transition (PT) Petri net is a quadruple
(P , T , F , m), where P is a set of places and T a set of transitions. F describes
weights of arcs which can connect places with transitions or transitions with
places. Each place holds zero or more tokens, which represent flow of control
through this place. The number of tokens in all places is called a marking of the
network, m: P → IN, and represents its state.

Fig. 3. (a) Production of a protein SEM-5 in the presence of coding gene sem-5(wt).
(b) Synthesis of a complex AB from one A and two B.

An example of a Petri net is given in Fig. 3(b). Places are depicted as circles,
transitions as rectangles, arcs as arrows and tokens as dots. If no F -value is
given, it is 1.

Incoming arcs at a transition represent its requirements and outgoing arcs
represent token production. A transition is enabled when all of the requirements
are met. An enabled transition can fire: consume all required tokens and produce
new tokens. The interleaving execution semantics of a Petri net is defined as
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follows: in each step select randomly one enabled transition, fire it, repeat.1

If there are no more enabled transitions left, the network deadlocks. This
semantics describes totally asynchronous behaviour, i.e. all possible interleavings
of transitions.

4 Modelling Biology

Below we present a method to represent biological knowledge as Petri nets. We
illustrate it with three examples of typical biological modelling problems. We
also introduce the design of our model and explain the adaptation of the Petri
net standard that we have developed.

4.1 Basic Translation

The translation of places and transitions into biological entities is straight-
forward. Places represent genes, protein species and complexes. However, we
have encountered many cases when we had to represent a single entity with
various characteristics as multiple places. For example, to differentiate between
active and inactive LIN-12 proteins, we used two places LIN-12 and LIN-12 ACT.
Transitions represent reactions or transfer of a signal. Arcs represent reaction
substrates and products. Firing of a transition is execution of a reaction:
consuming substrates and creating products.

4.2 Gene Expression

Figure 3(a) depicts a typical example of production of proteins from a gene. In
this case the ,,reaction” SEM-5 PRO produces proteins SEM-5 when the wild-type
gene sem-5(wt) is present. When the gene is not present, the ,,reaction” does
not take place.

4.3 Downregulation Through Production Suppression

Figure 4 depicts downregulation of a protein LIN-12 through suppressing the
expression of a gene lin-12(wt). Normally, if MPK-1 is not present, the reaction
LIN-12 PRO is enabled and produces protein LIN-12, similarly to the previous
example. However, when MPK-1 is present, the reaction LIN-12 DOWN is enabled
and has 0.5 chance of firing compared to LIN-12 PRO, so the production of
LIN-12 will halve.

4.4 Downregulation Through Product Removal

Figure 5 illustrates two processes. The first process is another model for
decreasing the level of LIN-12 by MPK-1 – the degradation through endocytosis.
Here the produced LIN-12 is removed, while in the previous example its
1 In this paper, by random selection we mean that the choice is non-deterministic and

all possible choices have equal probability to be selected.
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Fig. 4. MPK-1 downregulates LIN-12 by
suppression of lin-12(wt) gene

Fig. 5. MPK-1 degradation of LIN-12
through endocytosis and upregulation of
a lateral signal by MPK-1

production was reduced. Normally, if MPK-1 is not present, the level of LIN-12
does not change. However, when levels of LIN-12 and MPK-1 are high enough
(≥ 3), the reaction LIN-12DOWN can execute and decrease the concentration of
LIN-12. The second process is sending a lateral signal. When a high (≥ 5) level
of concentration of MPK-1 is present, a lateral signal can be initiated.

4.5 Concentration Levels

The number of tokens in our model does not represent directly the number
of molecules of proteins. In the Petri net model, we interpret it in two ways.
In case of a gene: 0–not present and 1–present. And in case of a protein:
0–not present and 1-2, 3-4 and 5-6 – low, medium and high concentrations.
The rationale behind this approach is to abstract away from unknown absolute
molecule concentration levels, in order to keep the model qualitative.

4.6 Maximal Parallelism

The interleaving semantics of Petri nets describes asynchronous behaviour,
cf. Sect. 3. However, this is not realistic for biological cells, where all reactions can
happen in parallel. Thus, in our model we use the maximal parallelism execution
semantics, which can be summarised informally as execute greedily as many
transitions as possible in one step. In this semantics, a step S is a multi-set of
transitions, i.e. a transition can occur multiple times in S. A maximally parallel
step is a step that leaves no enabled transitions in the net. A maximally parallel
step is enabled if executed transitions are enabled with the required multiplicity.
In case more than one maximally parallel step is possible, the one to execute in
a simulation is selected randomly. Figure 6 illustrates an example network and
possible maximally parallel steps. The maximal parallelism principle for Petri
nets is described for example in [13].

Efficient Implementation of Maximal Parallelism. In the implementation
of the maximally parallel execution of a Petri net, the key notion is a conflict.
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Fig. 6. A network with exactly three
possible maximally parallel steps: {t0×5,
t2 × 2}, {t0 × 3, t1, t2}, {t0 × 1, t1 × 2}.

Fig. 7. A bounded network with a bound
6. Transition t0 cannot fire because it
would create 7 tokens in p1 and maxi-
mally 6 tokens are allowed. Saturation in
place p1 is not possible.

We say that two transitions t and t′ are directly in conflict if they have a
common parent. They are in conflict if there exists a sequence of transitions
t= t1, t2, .., tk = t′ such that each pair (ti, ti+1) is directly in conflict. For example,
in Fig. 6 all three transitions are in conflict.

The computational cost of generating the next maximally parallel step is at
least Ω(exp(|T |)), as it involves verifying all subsets of T in the worst case,
i.e. when all transitions are in conflict. Fortunately, in our experience so far, in
nature the networks tend to be ,,sparse” and, as a result, this computational
cost has not been a bottleneck.

Algorithm 1. nextMaxStep(N : PetriNet)
1: S = ∅
2: D = generateConflicts(T )
3: for all d ∈ D do
4: Ad = backtrackAllMaxSteps(d)
5: sd = selectRandom(Ad)
6: S = S ∪ sd

7: end for
8: return S

Algorithm 1 shows how the next maximally parallel step is created in our
implementation. The algorithm proceeds in three stages. In the first stage, the
set of all transitions, T , is divided into a set of disjoint subsets of transitions in
conflict, D. Existence of enabled transitions in conflict implies that there exists
more than one possible step.

In the second stage, for each subset of transitions in conflict, d ∈ D, all possible
maximally parallel steps are generated using a simple backtracking technique.
The resulting step, sd, is then chosen randomly. Note that sd is a multi-set of
transitions that belong to d. In the third stage, the global step is combined out of
,,local” steps: S =

⋃
d∈D sd. This can be done because transitions that belong to

different subsets in D are not in conflict. In our implementation, the first stage
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of partitioning the network into disjoint transitions sets in conflict is executed
once, stored and used for creation of a sequence of maximally parallel steps.

4.7 Bounded Execution

In our first attempt, the execution of the network was not bounded, as it
was designed to produce the output into infinity. However, it turned out that
numerous nodes reached a high number of tokens, e.g. 800, which was in practice
impossible to downregulate or degrade. Furthermore, such a high production of
certain proteins is not realistic, as in nature the cell would saturate with the
product, and the reaction would slow down or stop. Therefore we introduced
a bounded execution with a chosen bound N = 6, which means that a place
cannot contain more than N tokens.

4.8 Bounded Execution with Overshooting

Bounded execution suffers from two problems. First, it is not possible to execute
partial reactions, and therefore sometimes saturation cannot be reached – see
the example of a network in Fig. 7.

Second, the partition of transitions used for fast execution (see Sect. 4.6)
does not work anymore, as there are more conflicts and the entire network
becomes inter-dependent. To overcome both problems, we implemented bounded
execution with overshooting. Each transition can overshoot maximally once. In
other words, a reaction can produce if all products have at least one free token
slot in the output place. Consequently, given a place with n incoming arcs with
weights w1, . . . , wn, the maximal number of tokens in p is (N −1)+

∑n
i=1 wi.

5 Modelling Solutions

While creating the model of C. elegans vulval development process, we developed
a number of good practices and techniques for modelling biological knowledge as
Petri nets, without extending the formalism. Below we present several of these
techniques.

5.1 Reactions Ordering

The fragment of the network depicted in Fig. 5 represented both downregulation
of LIN-12 by MPK-1 and sending a lateral signal (see Sect. 4.4). Let us assume
that only one token at a time flows into MPK-1. Note that the downregulation of
LIN-12 will take place before sending a lateral signal. This is because whenever
new tokens appear in MPK-1, they first reach the level 3. Only when LIN-12 level
drops to < 3 and blocks LIN-12 DOWN, can MPK-1 reach 5 and initiate a lateral
signal. The vulval development of C. elegans is initiated by the Anchor Cell, as
we described in Sect. 2. The P6.p cell receives a strong signal from AC, while
its adjacent cells P5.p and P7.p receive weaker signals and an additional lateral
signals from P6.p, see Fig. 8.
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AC

P3.p P4.p P5.p P6.p P7.p P8.p

Fig. 8. Anchor Cell initiates the vulval development process by sending stronger and
weaker signals

5.2 Modelling Signal Strength

At first we modelled a stronger signal naively – by sending more tokens: 3
instead of 1, as illustrated in Fig. 9. However, this did not work, as our
network, unbounded at that time, would just accumulate high concentrations
of certain proteins, and, as a result, there was no difference between weak and
strong signals. We increased the probability of production of LIN-3/P6.p with a
technique depicted in Fig. 10: using multiple transitions for LIN-3/P6.p. Now the
probability of executing LIN-3/P6.p is three times higher than the probability of
executing LIN-3/P5.p or LIN-3/P7.p. After applying this change, the pathway
behaved like a fast ,,pipeline”. Note that this way, spatial vicinity has been
translated in the model as the probability of execution.

5.3 Modelling Signal Strength Directly

The method presented in Fig. 10 worked so well that it gave us an idea of directly
implementing a transition attribute called strength, see Fig. 11. This way we
gained clarity in the graphical representation and, additionally, speedup in the
maximally parallel step computation, resulting from the reduction of the number
of subsets of transitions.

Fig. 9. A simple model for the Anchor
Cell signal. Signal strength is modelled
as higher production.

Fig. 10. A method to increase the
probability of transition execution
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The execution semantics needed to be adjusted: instead of randomly selecting
a maximally parallel step out of all generated possible steps, we compute a
probability that a maximally parallel step should be selected. This probability
is the sum of strengths of transitions in the step, normalised by the sum of
strengths of all transitions. For example, in Fig. 11, the probability that the
LIN-3/P6.p transition should be fired is 3

1+3+1 = 0.6. The realisation of this
idea was straightforward to implement.

5.4 Modelling Signal Slowdown

After we switched to modelling with saturation, we observed the following
phenomenon: the strong AC signalling pathway in the cell P6.p (see Sect. 5.2)
would stall, as most of the places were oversaturated. To overcome this problem
we used a method depicted in Fig. 12. In the first step, the transition LIN-3 PRO
executes. It results in production of LIN-3 down the pathway, but also puts
one token in the cycle. In the next two steps, the signal is not generated, but
the token continues cycling. After three steps, the signal is back in AC and the
process will repeat. Note that the cycle works as a delay or a buffer: the LIN-3
signal will be created every three steps.

By using this method, we reduced the number of tokens sent within the signal,
so that the pathway is able to handle the ,,bandwidth”.

Fig. 11. Transition strength. LIN-3/P6.p
is three times stronger than LIN-3/P5.p.

Fig. 12. A method to model signal
slowdown. In the first step, the AC signal
fires. Afterwards it signals every three
steps.

5.5 Good Practice: One Token Moves

In our first attempts to prototype the system, we frequently manually adjusted
weights on the arcs. However, this introduced uncertainties and guessed numbers
into the model. Thus, we decided to abstract away from them and move just one
token wherever possible. (Note, however, that we kept the reaction requirements.
If a requirement is k tokens, then we move back k − 1 tokens.)
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5.6 Unbounded Places

We found that in one important case the places should not be saturated, namely
in the environment of the cell. Note, however, that the presence of unbounded
places makes the analysis of the net, for example steady state determination,
more difficult.

5.7 Model Correctness

Deciding whether a model is correct is difficult and varies from case to case. The
C. elegans vulval development process has the advantage of discrete output, and
for verification we have used 48 experiments published by Fisher et al. [10].

Since the semantics of execution is probabilistic, it is not enough to run
one simulation of the network. To verify its behaviour, we ran a Monte Carlo
simulation – average multiple runs, typically 3000. We used the DAS-3 cluster
[14] for that. For each simulation, we set up genes appropriately and execute the
network for a fixed number of steps.

Our observations show that protein concentrations reach ,,steady” levels after
a fixed number of steps. We we use these levels to determine cell fates and check
whether the output is correct. Our experience so far is that single runs of the
simulation are good representatives of average behaviour, that is to say standard
deviation of network behaviour is small.

5.8 Debugging Simulations

In our attempts to create a correct model of C. elegans vulval development, we
found two approaches to debugging Petri net simulation particularly useful. First
are the plots of protein concentration levels during a simulation, averaged over
various windows. Second, we use a backtracking technique. During simulation
we generate statistics about the average numbers of tokens in places, firings of
transitions and executed steps. The statistics aid us to manually go ,,backward”
from output places, and trace which transitions were blocked, and which places
were oversaturated or depleted. This method typically reveals a problem in the
model, for example too strong downregulation or an incorrect concentration level,
and gives good hints as to why the execution did not work as it was supposed to.

6 Problems Identified

While extensively working with large Petri nets we noted several disadvantages
of using this formalism for modelling biological cells.

6.1 Drawing Tool

A major practical problem when creating the biological model is the lack of a
graphical tool supporting handling of large networks (by large we mean more
than 100 nodes). The most desirable features of such a tool are:



Design Issues for Qualitative Modelling of Biological Cells with Petri Nets 59

– Collective operations such as labelling, moving, hiding.
– Clever zooming, for instance zooming into a subset of the network.
– Adding new types of labels to nodes. For example, we needed to add label

strength to transitions, and we ended up using non-portable ways of doing
that.

– Support for the Petri Net Markup Language [15]. Using this standard turned
out very convenient, as we were able to switch drawing tools multiple times.

– Advanced visualisation of execution, allowing, for example, to view only the
selected nodes and switching of the viewing modes.

TINA [16] is the tool that we had best experiences with.

6.2 Modularity, Compositionality

Another disadvantage of using Petri nets for biological modelling is that they
offer little support for modularity and compositionality. Our model consists of
six identical cells, and each cell consists of two pathways. Applying a modular
approach would be very useful in this case. Also, with the view of possibly
including several development stages of C. elegans in the future, applying a
modular approach would be indispensable.

6.3 Synchrony vs. Asynchrony

Biology is neither totally synchronous nor totally asynchronous. For example,
a chemical reaction, i.e. creation of products and consumption of substrates,
can be thought of as immediate, synchronous. By contrast, sending a signal
to another cell is a typical asynchronous operation, like sending a letter. And
last but not least, time and quantities play an important role, meaning that
communications in different parts of a biological system tend to occur at the
same rate. A formalism to model biological systems should be able to express
such dependencies.

Petri net interleaving semantics models totally asynchronous behaviour
(cf. Sect. 3). We switched to a maximally parallel semantics (cf. Sect. 4.6), which
progresses in lockstep, i.e. it models synchronous behaviour. In our experience,
this way we achieve a much closer resemblance to biological cells.

However, we lost the possibility to model asynchronous communication. An
important open question is: how to introduce asynchrony into a lockstep?
Bounded asynchrony is discussed in [17], but has a disadvantage of incorporating
a global timer, and [18] focuses on coordination orchestration, which seems
heavy-weight for cell modelling.

7 Related Work

Petri nets were introduced by C. A. Petri in his dissertation in 1962 [11]. An
article by Murata [12] contains a good introduction to general Petri net theory.
Reddy was the first to use Petri nets for modelling of biochemical reactions. He
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presented a basic translation of a biological narrative into a Petri net and an
analysis with invariants [9]. Since that time, numerous papers applying Petri
nets to biological modelling were published, for example [6, 19, 20, 21]. All of
these papers use interleaving execution semantics and do not model saturation.
Resulting nets are also much smaller than ours. A different approach take
Genrich et al. [2], who create their network by querying biological databases,
such as KEGG [22]. The amount of data is huge and the resulting network is at
first gigantic, but then simplified to only 8 medium-size pathways.

Many extensions to Petri nets have been developed and used in modelling of
biological systems: Coloured Petri Nets (tokens have colours) [2], Stochastic Petri
Nets (transitions have rates) [21,23], Timed Petri Nets (transitions have delays)
[20], Hybrid Petri Nets (places can be continuous) [24], Functional Petri Nets
(transitions have functions) [25], and Hybrid Functional Petri Nets (everything
mixed) [26]. There is also a recurring approach of representing a biological
pathway in logic and translating it automatically into a Petri net [6, 27, 28].
The reader may find recent survey papers concerning modelling of biological
systems in [7, 26, 29].

The most common way of validation of Petri net models of biological systems
are simulations and comparing the evolution of concentration levels or reached
steady state to data in the literature, e.g. [20]. More advanced structural analysis
involves determining invariants or checking for deadlocks [9, 19] and model
checking, e.g. [28].

Besides Petri nets, there are numerous formalisms to model and analyse
biological pathways, such as process calculi, Boolean networks, statecharts, REO.
The reader might consult [18, 26, 30]. It is still not clear though which of those
techniques are best suited for biological modelling.

8 Current Results

At the time of writing this article, our model is still under development. Our
network is considerably larger than those typically published in papers on
modelling of biological cells using Petri nets – it has about 300 places and 300
transitions and approximately 950 edges. We localised a lot of the necessary
biological information in the literature, for example [8, 31, 32].

First results look promising. We developed an implementation of the execution
method, and are able to correctly repeat 46 out of 48 experiments from [10], using
Monte Carlo simulations.

9 Conclusions

In this paper we presented the technique of modelling biological cells as
distributed systems represented by Petri nets. We base our findings on the
C. elegans vulval development model that we have built. We propose to model
with the basic Petri net formalism, which is easy to understand and visualise, and
to adapt its execution semantics to resemble biology. Our execution semantics
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is based on the maximal parallelism principle (execute in parallel as much as
possible) and bounded execution with overshooting (saturation).

Petri net models that we use are both qualitative and quantitative. Qualitative
– because network structure represents static knowledge about interactions
within a cell. Quantitative – because places and transitions can contain or
require multiple tokens and we exploit this to express different signal strengths
and concentration levels. For instance, we can express that one protein is
produced five times faster than another protein, or that a concentration level
for downregulation has been reached.

There is currently a need for executable biological models, but no consensus
on what is the best biological modelling language [30]. In our experience so far,
quantitative Petri nets with maximal parallelism and bounded execution could
be a good choice. They very naturally feature concurrency, nondeterminism,
synchronisation and visualisation, they allow to model systems that resemble
the actual behaviour of biological cells, and a Monte Carlo simulator can be
implemented efficiently.

In the near future we intend to work on issues such as modularity, synchrony
versus asynchrony, system robustness, steady states, and model checking.
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Abstract. This paper reports on the multi-scale modelling of an intesti-
nal crypt cellular structure coupled with Wnt signalling. Using formal
modelling techniques based on the stochastic π-calculus, which supports
ambients needed for compartments, we develop a collection of cell and
molecular level models. The focus of our study is the role of Wnt in the
control of cell division and differentiation. Using the BioSPI simulation
platform, we analysed the model and reveal a plausible explanation for
a mechanism that ensures robustness of cell fate determination.

1 Introduction

Analysis of signal transduction has uncovered a remarkable complexity of sig-
nalling networks in terms of their structure and dynamics. Despite the avail-
ability of a vast amount of data on the properties of individual molecules, the
understanding of the function performed by a particular molecular network as a
whole is still lacking. The complexity of signalling architecture can be explained
by the need to optimize cellular response to the information it receives about
environmental and internal conditions. In particular, a significant degree of this
complexity can be attributed to ensuring robustness of the response despite
varying environmental conditions.

Numerous experimental data are known that implicate the Wnt pathway in
the control of different aspects of homeostasis [1,2,3,4,5]. It has been proposed
that Wnt signalling regulates cell proliferation and renewal in the large intestinal
epithelium. The large intestinal tract is built of geometrical tubular structures,
called crypts. Intestinal homeostasis involves cell generation by division at the
crypt base, progressive cell differentiation while they migrate to the top of the
crypt, and cell death followed by extrusion when they reach the top. Stem cells,
believed to reside at the crypt bottom, have the unique ability to maintain the
entire epithelium. As they divide and move up, stem cells must constantly adjust
their behaviour by entering partially differentiated population (called transit)
prior to terminally differentiating. Simultaneously, the proliferative capability of
transit cells is the highest and decreasing as cells move upwards. The question
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that arises is which factors control the ability of intestinal cells to keep a fine-
tuned balance between cell division and differentiation.

In this paper, we test the feasibility of different biological hypotheses about
the influence of Wnt signalling on the cell fate and the emergence of the robust
regulation of cell numbers in the tissue. The function of Wnt cannot be measured
experimentally; rather, only the average behaviour of the collection of cells in
response to Wnt factors can be observed. We therefore employ computational
modelling to examine if the specific properties of the Wnt pathway architecture
can provide the conditions for the emergence of the robust regulation mechanism
that ensures homeostasis in the intestine.

We base our approach on a conceptual extension of the stochastic π-calculus
for spanning multiple scales. We describe in detail how to build a multi-scale
model that couples signal transduction network to cellular decisions to proliferate
and differentiate. We then analyze the model to reveal how a population of cells
interacts and develops into a tissue under the influence of the environment.

2 Related Work

Several modelling approaches for studying the self-renewal process in the intes-
tine exist [7,8,9]. A recent model [7] is representative of the class of determin-
istic spatially-uniform models. The authors describe the evolution of cell num-
bers in stem, transit, and differentiated compartments, assuming the constant
compartment-dependent rates of renewal, differentiation and death. The model
is shown to be very sensitive to changes in these macroscopic rate constants. The
authors subsequently investigate the impact of the hypothetical negative feed-
back mechanism that, based on regulation of the rate at which cells differentiate,
allows the crypt to maintain the equilibrium in cell numbers.

In a similar compartment-based but stochastic approach [8], crypt growth is
described by a Markov process that models a stem cell population in which each
stem cell produces zero, one, or two stem cells, according to a fixed probability
distribution that does not vary from cell to cell. In the same manner as [7], the
probability of self-renewal vs differentiation is assumed to be pre-programmed
and independent of the conditions, except in case of stem cells knowing their
number. Both models, however, do not indicate how the knowledge of stem
cell numbers is acquired and propagated between physically separated cells. No
experimental evidence exists that supports this assumption.

The incorporation of spatial cell fate control mechanism is achieved in [9],
where deterministic model for crypt proliferation regulated by diffusible growth
factor is presented. Epithelium is modelled as a one-dimensional array of cells.
Each cell enters a cell cycle only if the growth factor concentration in the re-
spective cell exceeds a certain threshold. Growth factor is spread by diffusion
starting from the bottom of the crypt, but the concentration of growth factor in
the tissue is constant. The model mechanism ensures the dynamic regulation of
cell proliferation without the need to impose a static type-dependent program
executed by every cell. However, under more realistic conditions of stochastic
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time-varying growth factor field, the accuracy of this mechanism would collapse,
resulting in high variability in the numbers of proliferative cells and crypt size.

3 Using π-calculus for Modelling Intracellular Dynamics

The process-algebra approaches, originally developed in computer science for
describing and executing networks of concurrent components, have since been
successfully applied for analyzing molecular and genetic systems [10,11,12]. Once
a biological system has been modelled using basic components of the process
algebra, the model can be stochastically simulated to derive the properties under
study over time. Stochastic π-calculus [6] is one type of process algebras where
interactions are assigned rates controlled by exponential distributions. In this
paper, we use the BioSPI [11] as the platform which performs simulations of the
π-calculus code using an adaptation of the Gillespie algorithm [13].

In this section,wedescribe how stochasticπ-calculus canbe applied tomodelling
and analyzing molecular interactions and transient changes occurring within cell.
At the intracellular level, molecules are modelled as independent agents, governed
by discrete reaction rules. Concurrent molecular agents are interconnected to de-
scribe dynamic changes of intracellular state in response to internal and external
changes.

3.1 Molecules as Mobile Processes

A model in the stochastic π-calculus is a composition of concurrent components
(called processes), each of which operates as a state machine describing the
possible behaviours of the component. Processes communicate by sending data
on channels, which they can dynamically create and destroy. Probabilistic choice,
parallel composition, and scope restriction are among the built-in primitives of
the π-calculus.

A process X defined as a choice

X ::= π1, X1 + ... + πn, Xn

may evolve as either of Xi, depending on which of the operations πi (explained
below) is the first one to complete in the current context, thus representing a
race condition between a set of processes. A process X given by

X ::= X1|...|Xn

denotes a composition of processes X1, ..., Xn running in parallel. The creation
of the private channel r within the scope of the given process X is achieved by
the operator

(new r(c)) X

where channel r with rate c is bound to process X . Only processes that share
a private channel may interact using that channel. Timing is incorporated into
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π-calculus models by associating each channel r with the rate governed by the
exponential distribution with the mean 1/c.

Another basic operation of the π-calculus is synchronous communication of a
pair of processes over a channel. Output r! and input r? prefixes, where r is a
channel name, are elementary constituents of communication capabilities. The
result of communication between process X ::= r!{y}, X ′, containing an output
capability r!{y}, and process Y ::= r?{z}, Y ′, containing an input capability
r?{z}, follows from the central reduction rule:

r!{y}, X ′|r?{z}, Y ′ −→ X ′|Y ′[y/z],

where y is substituted for z in Y ′. Communication between processes may carry
information that further changes their interaction capabilities.

It is possible to represent π-calculus processes using a graphical notation. In
graphical π-calculus, a model is a graph whose nodes correspond to processes
and edges correspond to state transitions. Fig. 1 illustrates how basic operations
are represented graphically.

r ! {y} r ? {z}

X

X’

Y

Y’ [y/z]
X1 Xn

X

�� ��

X1 Xn X

( r )

Fig. 1. Communication, choice, parallel composition, and scope restriction primitives
of the stochastic π-calculus

A translation scheme that maps molecular reaction networks into π-calculus
programs was the subject of previous publications [10,11]. Molecular entities can
be coded in the π-calculus as processes that participate in reactions by commu-
nicating over channels. State transitions resulting from process communication
correspond to covalent modification, association/dissociation, or degradation of
signalling molecules. Molecules with several independent functional domains are
represented as a parallel composition of π-calculus processes.

3.2 The Model of the Wnt Signalling Pathway

Wnt signalling induces a great variety of cell responses, spanning from mor-
phogenesis and adult tissue homeostasis, to cancer formation. The main event
of Wnt signalling is the accumulation of β-catenin which sends a signal into
the nucleus for further processing. In the absence of the signal, a cytoplasmic
degradation complex consisting of proteins Axin and APC, and kinase GSK3,
rapidly degrades β-catenin. To activate the pathway, extracellular Wnt binds
to the membrane receptor complex which generates the signal by inhibiting the
degradation complex. This reduces the degradation rate of β-catenin, leading to
its accumulation in the nucleus [14].
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Fig. 2. π-calculus model of the Wnt pathway

The detailed model of the Wnt signalling pathway has been described elsewhere
[15,16]. We further experiment with the model by testing additional mechanisms
with respect to their capacity to enhance system robustness and adaptability. Al-
tering the number of intracellular components, for example, is expected to alter
cellular response, but if the system is robust, the extent of this alteration will be
minimized. The system has, however, to sense and adapt to changes of the en-
vironmental conditions. We find that the addition of feedback loops [14] has a
significant effect on promoting system robustness to parameter variation, a char-
acteristic crucial for reliable performance of many biochemical networks.

Fig. 2 describes the π-calculus implementation of the revised Wnt pathway
model. The process Beta, a π-calculus abstraction of β-catenin, interacts on chan-
nel beta with the process Axin∗ used to represent an activated state of the de-
struction complex. After interaction is completed, the resulting process can use
channel rel to break the binding and return to its original state Beta, or can be
degraded (transition marked deg). Axin can transit between inactive and active
states with delay times specified by phos and dephos. Active Axin contains a com-
plementary interaction capability ?beta that allows it to interact with Beta. Using
channel wnt, Axin∗ can bind and subsequently be inhibited by the activated re-
ceptor complex Rec∗. A negative feedback loop is created by Beta which spawns
further instances of the process Axin (at the rate specified by asyn).

In Fig. 3 we plot model outputs obtained from a single simulation run. De-
pending on the strength of the incoming stimulus Wnt (represented as a frac-
tion of activated receptors), the system allows for different dynamic regimes. At
low levels of Wnt, the model predicts stochastic outbreaks of β-catenin activity
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Fig. 3. Steady state value of β-catenin for different levels of the incoming Wnt: 25%
(left) and 100% (right) of the receptors are activated

(Fig. 3 (left)) (note that the deterministic counterpart of the model reaches a
steady state with low levels of β-catenin, for details see supporting website [25]).
As the stimulus increases, the oscillations become regular and are most coher-
ent in the deterministic limit when the number of molecules is very large, thus
corresponding to the limit cycle behaviour of the deterministic system. These re-
sults agree with experimental evidence that high-intensity staining for β-catenin
is observed only in a few cells at the bottom of the crypt, where Wnt signal
is the strongest. Transient β-catenin is observed throughout the proliferative
compartment in the lower 2/3 of the crypt. Indeed, we validated model predic-
tions of oscillatory pathway dynamics in human cell cultures (a manuscript in
preparation).

4 Extending a Framework to Model Cells

We are interested in testing possible hypotheses about Wnt-based control of
cell proliferation and differentiation in the intestine. To test the feasibility of
the mechanisms proposed by different research groups, we build a model that
couples cellular decisions with the state of the Wnt signalling network embedded
in every cell. Next, we explain how an extension of the π-calculus can be used
for spanning different scales of the biological system.

4.1 Cells as Mobile Ambients

In order to extend the model with the cell-level dynamics, we first acquire a
mechanism of embedding molecules into cells. We use ambients [19] to define a
bounded place where interactions between agents happen. Enrichment of the sto-
chastic π-calculus with ambients, introduced in [17], provides an ability to spec-
ify communication between π-calculus processes based on their location within
a common boundary.

An ambient is a location where communication happens: cell[X ] stands for the
process X running at the location cell (i.e., in ambient cell). Locations may reside
within locations: in cell[mol[A] | mol[B]] two ambients mol are incorporated into
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expel x

exit x

accept x

enter x

merge+ x

merge− x

Fig. 4. Ambient capabilities

the ambient cell. Computation may contain the reconfiguration of a hierarchy
of locations. In the following, we graphically represent an ambient as a dashed
rectangle around the processes and sub-ambients it contains, possibly labelled
with the ambient name. The derived models are simulated using the BioSPI
platform [11] which supports ambients without modifying the semantics of the
stochastic simulation [13].

Spatial configuration of the ambient system can be changed using capabilities
such as exit/expel from the ambient, accept/enter into the ambient or merge
with the ambient (Fig. 4). Communication abstraction is extended to represent
compartment restriction on interactions based on their locations. Three types of
communication restrictions are local (between processes in the same ambient),
s2s (between processes in sibling ambients) and p2c/c2p (between processes in
parent and child ambients) (Fig. 5).

local x ? {z}

local x ! {y} s2s x ! {y}

s2s x ? {z} c2p x ? {z}

p2c x ! {y}

Fig. 5. Communication directions between ambients

To represent cells, allowing molecules to be assigned and re-assigned to spe-
cific cells, we abstract cells as ambients. Consequently, molecular communication
within one cell is abstracted by the s2s communication direction. For communi-
cating the state of the intracellular molecular network to the cell decision-making
process, we use the p2c/c2p direction.

4.2 Modelling Cell Division and Movement

Here we present the spatial abstraction that describes the diffusion of the extra-
cellular morphogene in one direction in the tissue. The pressure exerted by cell



70 O. Tymchyshyn and M. Kwiatkowska

division due to higher amounts of the morphogene directs the cell to move away
from the morphogene source. This would accommodate the scenario of Wnt mor-
phogene distribution along the crypt length and cell movement to the top of the
crypt. Analogous extension of the π-calculus framework with spatial information
is necessary when the desired objective is to simulate diffusion of extracellular
growth or inhibitory factors, competition for space between different cells, or cell
adhesion.

To model spatial abstraction, we define a neighbourhood relationship between
cells. Two cells are neighbours if they share a private channel which is used to
send instructions from one neighbour to another. In one-dimensional space, it is
sufficient for each cell to keep the reference to its upper neighbour (channel next
in Fig. 6). Extracellular signal and cell movement are functions of the neigh-
bourhood. Following cell division, the upper neighbour is requested to free its
position by moving upwards. Another instance of a cell is created and is inserted
in the neighbouring position by updating its references to the neighbourhood,
as illustrated in Fig. 6.

L

(pos, move)

next

(posInc, nextInc)

nextInc
L

mol

  next/move,
  nextInc/next]

[posInc/pos,

  next/move,
  nextInc/next]

[posInc/pos,

cell

Cycle

Cycle

pos

s2s move!{pos, next} s2s next?{posInc, nextInc}

s2s next?{posInc, nextInc}
cycle

Cycle

cell

Cycle

cell

Fig. 6. Cell organization: linear array of cells referencing upper neighbours (left); and
lattice representation in π-calculus (right)

Diffusion of the external morphogene is simulated by calculating the concen-
tration of the external factor field at each cell position rather than simulating the
movement of factor molecules within the spatial lattice. The channel pos with
appropriate rate is carried by each cell to indicate its distance to the morphogene
source.

5 A Model of Intra- and Inter-cellular Dynamics of the
Crypt

Numerous and often inconsistent evidence exists suggesting that Wnt signalling
controls the balance between cell proliferation and differentiation in the intestinal
crypts and other tissues. Wnt is suggested to influence cell advance or withdrawal
from the cell cycle [1,3,4], and cell ability to maintain its stem-cell phenotype
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or to differentiate [2,5,21]. To test different hypotheses about the Wnt-based
regulatory mechanisms involved in the intestinal homeostasis, we build a multi-
scale model that couples the state of the intracellular network based on the
previously described Wnt pathway to different decisions that the cell might make.
The extracellular diffusible Wnt triggers changes in the intracellular state and
thus influences cellular behaviour. We examine how these mechanisms influence
the robust turnover of cells in the intestinal crypt and its disregulation in cancer.

5.1 Proliferative and Differentiated Cell Fate

In our model, we adopt two threshold mechanisms to decide whether the cell
undergoes proliferation, differentiation, or stays quiescent. Increased β-catenin
activity influences the initiation of a new cell cycle. The time to complete the
cycle is assumed to follow an exponential distribution. Variability of the cycle
length is thus incorporated into a delay needed for the cell to make a decision
to proliferate.

In addition, β-catenin expression is linked to the ability of a stem cell to pre-
serve its phenotype. We assume that once the cell starts expressing differentiation
markers, differentiation is irreversible. While stem cell divides to produce two cells
with an equal stem-cell capability, differentiated cell divides to produce two iden-
tical differentiated cells. Differentiated cells are also assumed to have a limited life
span, as opposed to stem cells which are subjected to only a low-level apoptosis.

The alternative hypothesized scenarios of cell-fate decisions which we compare
are:

Hypothesis 1. Transient activation of β-catenin in the cell triggers initiation
of a new cell cycle. High levels of β-catenin are required to preserve stem
cell properties.

Hypothesis 2. Transient activation of β-catenin is sufficient to push the cell
into a new cycle while prolonged β-catenin signalling causes the stem cell to
start expressing differentiation markers.

Each threshold mechanism is associated with a π-calculus channel which
transmits a signal to the cell once the level of the intracellular β-catenin ex-
ceeds a specified threshold. In Fig. 7, channel molcycle is used to instruct the
cell to enter a new cycle. Another threshold moldiff blocks (Hypothesis 1) or
triggers (Hypothesis 2) cell differentiation (Fig. 7).

5.2 Wnt Gradient in the Tissue

Because Wnt targets are generally expressed in stem and proliferative cell com-
partment, it is widely accepted that Wnt factors are produced at the bottom of
the crypt and are then transported by diffusion [20]. However, it has recently
been suggested that Wnt gradient follows a more complex pattern due to sur-
prisingly strong expression of the extracellular Wnt inhibitors at the bottom
of the crypt [24]. We approximate this by additionally decreasing the rate at
which Wnt is received by cells located at the bottom of the crypt spatial lattice
(channel pos in Fig. 7).
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Fig. 7. Stem cell evolution: a cell undergoes proliferation, differentiation, or death.
Additionally, the cell is constantly receiving information about the environment, and
adjusts its position within the spatial lattice to accommodate newly born cells.

6 Robust Cell Fate Determination by Wnt Signalling

Using the BioSPI platform, we perform extensive simulations of the described
scenarios in order to derive the properties of the multi-scale cellular system
whose regulatory control is the extracellular diffusible factor Wnt. The derived
models are subsequently analyzed with respect to the number of cell divisions as
a function of cell position along the crypt vertical axis (i.e., distance to the Wnt
source), the total number of cells in the crypt, and influence of stochasticity and
random parameter perturbations on the tissue response (details about model
parameters used in simulations and full model implementation are available at
the website [25]).

The first family of models implement cellular decision mechanism described
by Hypothesis 1. Our analysis shows that under these assumptions the fate
that the cell assumes is very sensitive to the level of Wnt it is exposed to.
The distribution of proliferating cells mimics the distribution of the Wnt factors
along the crypt axis. The result is a high variability of the size of proliferative
cell compartment and crypt size, which is inconsistent with the experimental
observations. Moreover, activating mutations in the Wnt pathway, which increase
the level of intracellular β-catenin, lead to significant expansion of the stem cell
compartment. Consequently, the number of cells in the crypt becomes unstable
and starts growing exponentially. We conclude that Hypothesis 1 is unable to
reproduce the tissue response observed experimentally.

Simulations of the model based on Hypothesis 2 reveal that this combination
of intracellular and cellular dynamics ensures robust tissue response mediated by
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Wnt (Fig. 8 (left)). Rather than being scattered throughout crypt length, prolifer-
ative cells are confined to the restricted compartment at the bottom of the crypt.
This is consistent with the experimental data ([18,22] and Fig. 8 (right)). The
number of proliferative cells as well as the total number of cells in the crypt shows
little variability, despite random noise and stochastic perturbations present in the
model. This is consistent with the reports of a surprisingly narrow distribution of
crypt sizes, the fact that has not yet been reproduced in modelling studies.

We next investigate the effects of the mutations in the Wnt pathway which
were identified in concrete cancer models: Familial Adenomatous Polyposis [18],
hyperplastic and adenomatous polyps [22,23]. To simulate the effect of muta-
tions, we decrease the rate of the β-catenin inhibition by the active APC/Axin
destruction complex (channel beta in Fig. 2). Up to 5-fold decrease of the β-
catenin inhibition rate results primarily in a shift of the proliferative cells to-
ward the top of the crypt (Fig. 8 (left)). The size of the crypt is increased only
slightly. These predictions are in good agreement with the experimental evidence
[18,22]. Fig. 8 (right), adapted from [18], shows experimental evidence of changes
in the structure of the proliferative compartment resulting from mutations that
decrease the activity of β-catenin inhibitor complex.
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Fig. 8. Cell fate control by the Wnt pathway: model predictions (left) of the prolifer-
ative cell distribution in both healthy and mutant tissues agree well with the experi-
mental data (right)
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Further inhibition of the destruction complex leads to more advanced forms
of intestinal cancer: colorectal adenomas [22,23]. While cell proliferation shifts
upwards at the initial stage, the model predicts the break up of the mechanism
that confines proliferative cells to the bottom of the crypt. This is consistent
with the experimental observations of proliferation in adenomas being almost
evenly distributed throughout the crypt length [22,23].

Our model provides an explanation to the observed phenomena. Cell prolif-
eration is triggered by even modest increase of the Wnt levels which is sufficient
to upregulate β-catenin to high amplitude. As Wnt increases, stochastic oscilla-
tions in β-catenin expression become deterministic and their frequency increases
along with the cell proliferation rate. Analysis of the model also shows that under
Hypothesis 2, which links stem cell fate to the region of rare stochastic oscilla-
tions of β-catenin activity, stem cells are limited to low Wnt region and decrease
in numbers under mutant conditions. Thus, the model is not only consistent
with the reports of low β-catenin activity in stem cells [2,5] and the reduced
proliferation rate of stem cells caused by rare outbreaks of β-catenin, but also
suggests the protection mechanism against the stem cell expansion that would
immediately lead to the exponential growth of tumours [7].

7 Conclusions

In this paper, we employed formal modelling techniques based on the stochas-
tic π-calculus to examine different hypotheses about the influence of the Wnt
pathway on homeostasis of the intestinal epithelium, and its role in tumourige-
nesis. We proposed that possible function of Wnt is to ensure the robust cell
fate determination. The model of the Wnt signalling pathway was subsequently
coupled to the cellular behaviour and the environment to test its role in main-
taining a fine-tuned balance between cell division and differentiation. The result
of the model is consistent with different properties of the distribution of cells
in the crypt. The model can explain both the stability of the healthy regula-
tion and the changes seen in mutant phenotypes. The model also suggests which
characteristics of tissue architecture can protect it from unbounded growth.
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Abstract. In this work we develop a new technique for over-approximating (in
the sense of timed trace inclusion) continuous dynamical systems by timed au-
tomata. This technique refines commonly-used discrete abstractions which are
often too coarse to be useful. The essence of our technique is the partition of
the state space into cubes and the allocation of a clock for each dimension. This
allows us to get much better approximations of the behavior. We specialize this
technique to multi-affine systems, a class of nonlinear systems of primary impor-
tance for the analysis of biochemical systems and demonstrate its applicability
on an example taken from synthetic biology.

1 Introduction

Rigorous reasoning about the behavior of continuous dynamical systems has been a
topic of study within various communities including qualitative physics in AI, robotics,
and hybrid control systems. A more recent motivation comes from the domain of sys-
tems biology which, among other things, attempts to build quantitative dynamic models
that capture the behavior of complex networks involving a large number of biochemi-
cal substances. Due to experimental limitations, such models admit a lot of uncertainty
concerning parameter values and environmental conditions. Consequently, there is a lot
of ongoing effort to apply methodologies used in the design of complex artificial sys-
tems, formal verification included, to analyze the implication of proposed models and
assess their plausibility. The fact that biochemical models are often described as differ-
ential equations, with state variables denoting substance concentrations motivates the
effort to adapt algorithmic verification technology (model checking) to continuous and
hybrid systems in order to prove satisfaction of temporal properties by all system be-
haviors (trajectories) departing from a possible set of initial state and subject to a class
of admissible inputs (disturbances).

One can classify various approaches to algorithmic verification of continuous and
hybrid systems as using direct and indirect methods:1
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1 Another way to view this classification is between methods based on time and space
discretization.
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1. Direct methods work on the original dynamics of the system, starting from a set of
initial states and applying a “successor” operator that computes the set of states
reachable from those by following the continuous dynamics, until a fixpoint is
reached (or not). For hybrid systems with a very simple continuous dynamics in
each discrete state, namely, constant derivatives as in timed automata or linear hy-
brid automata (LHA), such successor states can be computed exactly for all future
time instants [ACH+95, HHW97, F05]. The problem however still remains unde-
cidable for most interesting classes due to the combination of such dynamics with
discrete transitions [HKPV98, AMP95]. If the system admits a more complex dy-
namics defined by differential equations, the successors can be computed in an ap-
proximate manner using a kind of set-based numerical integration [DM98, CK98],
[ABDM00, CK03, ADF+06].

2. Indirect methods (which are the subject of this paper) transform the original system
model into an abstract model belonging to a simpler class, whose verification is eas-
ier and often decidable. The most commonly-used class of abstract models are, of
course, finite-state automata, used extensively in the biological context [dJPHG01,
BRdJ+05, HKI+07], but other reduction techniques have been proposed such as us-
ing timed automata to approximate continuous systems [SKE00] and LHA [OSY94],
approximating continuous systems by LHA [HHW98, F05] or approximating non-
linear systems by piecewise-affine differential equations [ADG03]. The major ad-
vantage of the indirect approach is that simpler classes of models, for example finite-
state automata, admit well-known model-checking algorithms, realized by numer-
ous mature tools, while the adaptation of such techniques to systems with non-trivial
continuous dynamics is much more difficult if not impossible.

Procedures for deriving such abstract models offer a tradeoff between the accuracy
of the obtained model and the difficulty in deriving and analyzing it. The most straight-
forward approach for constructing automata from continuous systems, defined via an
equation of the form ẋ = f(x) consists of partitioning the continuous state space into
rectangular cells, and defining a transition between neighboring cells if there is a tra-
jectory of the continuous system that goes directly from one cell to another. This latter
fact can be determined locally by evaluating f on their common boundary. While this
approach guarantees a conservative over-approximation in the sense that the existence
of a trajectory from x to x′ in the concrete systems implies the existence of a corre-
sponding run in the automaton, it suffers, like any abstraction technique, from “false
transitivity” leading to numerous spurious behaviors, that is, abstract behaviors that do
not correspond to concrete ones.

In this paper we refine this abstraction scheme by adding clocks to the automata
[AD94]. The use of timed automata brings the following advantages:

1. The added clocks keep track of the progress of the trajectories along each dimen-
sion, and their values are used to constraint the dynamics of the automaton, result-
ing in a significant reduction of false transitivity. Moreover, the accuracy of the
model can be improved indefinitely by refining the underlying grid;

2. The timed model generates timed behaviors that can be checked against quantita-
tive timing properties expressed in real-time temporal logics such as MTL [Koy90]
or MITL [AFH96], while this information is absent from purely discrete models;
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3. The constructed models can be handled by existing verification tools for timed au-
tomata such as Uppaal [LPY97] or IF [BGM02] that can compute reachable states
and, in principle, perform model checking.

The rest of the paper is organized as follows. In Section 2 we give preliminary defi-
nitions and demonstrate the problem of false transitivity. In Section 3 we show how to
derive a timed automaton from a continuous dynamical system and prove that it con-
stitutes a conservative approximation. We then present the derivation of delay bounds
for the class of multi-affine systems, a class of nonlinear dynamical system used exten-
sively in biological modeling. Section 5 reports preliminary experimental results using
a prototype implementation which generates timed automata written in the IF format.
A discussion of past and future work concludes the paper.

2 Preliminaries

We start this section with some definitions concerning dynamical systems, the parti-
tion of space into cubes and related geometrical concepts and notations taken from
[BMP99]. To simplify notations we consider integer grids and temporal properties gen-
erated from atomic propositions of the form xi ≥ k with integer k. Of course, all the
results can be adapted to non-uniform grids.

We consider a dynamical system S = (X, f) with state space

X = X1 × · · · × Xn = [0, m) × · · · × [0, m) ⊆ R
n

and dynamics is defined by
ẋ = f(x) (1)

where f = (f1, . . . , fn) is a well-behaving continuous function from R
n to itself. A

trajectory of the system starting from an initial state x is a function ξ : R≥0 → X such
that ξ is the solution of (1) with initial condition x0, that is, ξ(0) = x0 and for every
t ≥ 0,

dξ

dt
(t) = f(ξ(t)).

We impose an integer grid on X by letting V = V1 ×· · ·×Vn, Vi = {0, . . . , m−1}
and letting C(X) be the set of unit cubes with integer vertices which are contained in
X . We use V to represent C(X).

Definition 1 (Cubes, Neighbors, Facets and Slices)

1. The cube associated with a point v = (v1, . . . , vn) ∈ V is

Xv = [v1, v1 + 1) × · · · × [vn, vn + 1),

that is, the unit cube for which v is the leftmost corner.
2. The successor and predecessor of a vertex/cube v in the ith direction are, respec-

tively

σ+i(v1, . . . , vi−1, vi, . . . , vn) = (v1, . . . , vi−1, vi + 1, . . . , vn)
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and
σ−i(v1, . . . , vi−1, vi, . . . , vn) = (v1, . . . , vi−1, vi − 1, . . . , vn).

Two cubes/vertices are neighbors if one is the i-successor/predecessor of the other;
3. The common facet between two neighboring cubes is the (n− 1)-dimensional cube

obtained by intersecting their boundaries;
4. The i-slice associated with an integer r is the set Xi,r obtained by restricting X to

points satisfying r ≤ xi < r + 1.

Note that a unit cube Xv , v = (v1, . . . , vn), is an intersection of n slices:

Xv =
n⋂

i=1

Xi,vi .

Definition 2 (Grid Based Abstraction)

1. The abstraction function α : X → V maps every point to the cube it belongs to,
that is, α(x) = v if x ∈ Xv;

2. The timed abstraction of a trajectory ξ is ξ′ = α(ξ) such that for every t, ξ′(t) =
α(ξ(t));

3. The untimed abstraction ᾱ(ξ) of ξ is the (stutter-free) sequence of cubes appearing
in α(ξ).

Definition 3 (Extremal Values of f )

1. The extremal values of fi in a cube v are

f i

v
= min{fi(x) : x ∈ Xv} and f

i

v = max{fi(x) : x ∈ Xv}.

2. The minimal absolute velocity of fi in a cube v is

f i

v
= min{|fi(x)| : x ∈ Xv}

3. The extremal values of fi on slice Xi,r are

f
i,r

= min{fi(x) : x ∈ Xi,r} and f i,r = max{fi(x) : x ∈ Xi,r}

The standard way to derive a finite-state automaton from a dynamical system is sum-
marized by the following definition.

Definition 4 (Abstraction by Automata). The automaton Ā = (V, δ̄) is an abstraction
of S if δ̄ consists of all pairs (v, σ+i(v)) of cubes such that fi admits a positive value
on their common facet and all pairs (v, σ−(v)) such that fi admits a negative value on
their common facet.

Claim (Conservativism). For every trajectory ξ of S, there is a run ξ̄ of ĀS such that
ξ̄ = ᾱ(ξ).
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Fig. 1. (a): A simple continuous system with constant derivatives. The states reachable from the
initial cube lie between the two arrows and their cube abstraction is shaded; (b) The automaton
derived according to Definition 4 in which the whole state space is reachable.

This result implies that any (next-free) LTL property, generated by atoms of the
form xi ≥ k, which is satisfied by ĀS is satisfied by S. However, as the following
example shows, ĀS may have so many spurious behaviors, that it might be hard to
prove interesting properties based on it. Consider a system where f = (1, 1, . . . , 1) as
in Figure 1-(a). Since f has a positive component for every direction everywhere, there
will be a transition from each cube to each of its i-successors and the whole state space
will be reachable.

As one can see, the false transitivity is due to the fact that the transition relation
between neighboring cubes is computed locally: since it is possible to go from v to
σ+i(v) and from σ+i(v) to σ+i(σ+i(v)), the automaton allows these two successive
transitions to happen, ignoring timing constraints related to the fact that between these
two transitions, the trajectory needs to cross the distance between vi and vi + 1 in
direction i, a process that takes time and might be slower then the crossing in other
directions. In this paper we use clocks to impose such timing constraints.

Definition 5 (Timed Automaton). A timed automaton is a tuple A = (Q, C, I, Δ)
where Q is a finite set of discrete states, C is a set of clock variables ranging over
R≥0 ∪ {⊥} where ⊥ is a special symbol indicating that the clock is inactive, I is
the staying condition (invariant) which assigns to every state q, a conjunction Iq of
conditions of the form c < d for clock c and integer d. The transition relation Δ consists
of tuples of the form (q, g, ρ, q′) where q and q′ are discrete states, the transition guard
g is a positive combination of conditions of the form c ≥ d or c = ⊥, and ρ is a clock
transformation defined by one or more assignments of the form c := 0 or c := ⊥.

A configuration of the automaton is a pair (q, z) where z is a clock valuation. The be-
havior of a timed automaton consists of an alternation between time progress periods
where the automaton stays in a state q and Iq continuously holds, and discrete instanta-
neous transitions guarded by clock conditions. Formally, a step of the automaton is one
of the following:

– A time step: (q, z) t−→ (q, z + t), t ∈ R+ such that z + t satisfies Iq , and z + t is
the result of adding t to clocks active in z.

– A discrete step: (q, z) δ−→ (q′, z′), for some transition δ = (q, g, ρ, q′) ∈ Δ, such
that z satisfies g and z′ is the result of applying ρ to z
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A run of the automaton starting from a configuration (q0, z0) is a finite or infinite se-
quence of alternating time steps and discrete steps of the form

ξ : (q0, z0)
t1−→ (q0, z0 + t1)

δ1−→ (q1, z1) −→ · · ·

whose duration is
∑

ti. One can also view such a run as a function ξ : R≥0 → Q with
ξ(t) = q if after a duration of t the run is at state2 q.

3 From Dynamical Systems to Timed Automata

We first establish some upper bounds on the time a trajectory may stay in a cube or in a
slice and lower bounds on the time that must elapse between two successive transitions
in the same direction.

Claim (Cube Sojourn Bounds). A trajectory entering a cube Xv cannot stay there more
that tv time where

tv = min{1/f i

v
: 1 ≤ i ≤ n}.

This implies that any cube Xv must be left in finite time unless every fi attains a zero
in it. The following definition establishes lower bounds on the time is takes a trajectory
to cross a unit of distance in a positive or a negative direction based on the bounds on
its derivative.

Claim (Slice Sojourn Bounds). Let ξ be a one-dimensional trajectory whose derivative
in the interval [t, t + h] is bounded in [f, f ]. Then

ξ(t + h) − ξ(t) = 1 ⇒ h ≥ t+

ξ(t + h) − ξ(t) = −1 ⇒ h ≥ t−

(∀h′ ≤ h ξ(t + h′) − ξ(t) ≥ −1) ⇒ h ≤ t
+

(∀h′ ≤ h ξ(t + h′) − ξ(t) ≤ −1) ⇒ h ≤ t
−

where t+, t
+

, t− and t
−

are computed from [f, f ] according to the following table

t+ t
+

t− t
−

0 < f < f 1/f 1/f ∞ ∞
f < f < 0 ∞ ∞ −1/f −1/f

f < 0 < f 1/f ∞ −1/f ∞

(2)

Corollary 1 (Slice Transversal). Let f
i,r

and f i,r be the bounds for fi in slice Xi,r

and let t+i,r, t−i,r, t
+
i,r and t

−
i,r be the sojourn bounds derived from them according to (2).

1. A trajectory that enters Xi,r from the left cannot leave it from the right in time

smaller then t+i,r and cannot stay in the slice more than t
+
i,r

2 If one or more transitions occur at t we take ξ(t) to be the state reached after the last transition.
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2. A trajectory that enters Xi,r from the right cannot leave it from the left in time

smaller then t−i,r and cannot stay in the slice more than t
−
i,r.

Based on this bounds we can now define the approximating timed automaton. Clocks z+
i

and z−i will be reset upon entering an i-slice from the left or from the right, respectively
and will constrain further transitions in the same direction. Clock z will be reset at every
transition and will be used for the invariant. We used timed automata with explicit
deactivation of clocks denoted by x := ⊥. Whenever a transition in one direction is
taken, the clock in the other direction becomes inactive.

Definition 6 (Approximating TA).
Given a dynamical systems S = (X, f), its approximating timed automaton is AS =
(V, Z, I, Δ) where Z = {z, z+

1 , . . . , z+
n , z−1 , . . . , z−n } is a set of clocks, I is an invariant

defined for every state v as

Iv = z < tv ∧
n∧

i=1

(z+
i < t

+
i,vi

) ∧ (z−i < t
−
i,vi

)

with z < ∞ interpreted as true. The transition relation Δ consists of the following
transition types:

δ+i
v : (v, z+

i ≥ t+i,vi
∨ z+

i = ⊥, z+
i := 0; z−i := ⊥; z := 0, σ+i(v))

and
δ−i
v : (v, z−i ≥ t−i,vi

∨ z−i = ⊥, z−i := 0; z+
i := ⊥; z := 0, σ−i(v))

provided that such transitions are possible in the discrete abstraction Ā.

We do not specify the initial state to provide for queries concerning different initial
cubes. For every cube Xv we will use

Zv = {0} × [0, t+1,v1
] × · · · × [0, t+n,vn

] × [0, t−1,v1
] × · · · × [0, t−n,vn

]

as an initial timed zone when we ask queries about trajectories starting at Xv. This way
we are conservative with respect to all possible initial points in Xv which can be as
close as we want to the boundary and cross as early as we want. The property of the
timed automaton is summarized by the following theorem.

Theorem 1 (Neo Conservatism). For every trajectory ξ of S starting from a point
x ∈ Xv there is at least one run ξ′ of AS staring from (v, Zv) such that ξ′ = α(ξ).

Proof. Note that ξ′ = α(ξ) means that ξ′ takes transitions exactly when ξ crosses
grid boundaries, and that ξ′ can stay in a state as long as ξ stays in a cube. We use
the following auxiliary assertion that we prove by induction: for every trajectory ξ of
duration t, starting from x = (x1, . . . , xn) ∈ Xv and ending in x′ = (x′

1, . . . , x
′
n) ∈

Xv′ there is a run ξ′ of AS starting at (v, Zv) and ending in (v′, z) such that ξ′ = α(ξ)
and

1. The value of z is the time elapsed having entered Xv (or since time zero if we are
still in the initial cube).
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2. The value of each clock z+
i and z−i is equal to one of the following

– The time elapsed since time zero if no crossing in direction i has occurred in ξ
up to time t;

– The time elapsed since the last i-crossing if it took place in the matching direc-
tion (positive for z+

i , negative for z−i );
– Otherwise, if the last i-crossing was in the opposite direction, the clock is in-

active.

The proof is by induction on the number k of boundary crossings by the trajectory
during the interval [0, t]:

– Base case: k = 0 and the trajectory remains in the same initial cube (Figure 2-(a)).
According to Rolle’s theorem each fi has a derivative (x′

i − xi)/t in the cube v
(and in each of the slices it belongs to). In other words

f i

v
≤ (x′

i − xi)/t ≤ f
i

v and f i

v
≤ |(x′

i − xi)|/t.

Taking into account that x′
i − xi ≤ 1 we have

t ≤ t/(x′
i − xi) ≤ ti,vi and t ≤ t/|(x′

i − xi)|/t ≤ tv

which implies that there is a run of the automaton starting at v with all clocks set to
zero that will satisfy the state invariants during the whole interval [0, t].

– Inductive case: assuming the claim holds for all trajectories that cross grid bound-
aries at most k times, we show it holds for trajectories with k +1 crossings. Let the
new crossing occur in dimension i and, without loss of generality, be in the positive
direction. First we show that for each j the state invariant holds between the last
j-crossing and the time it reached x′. Since this part of the trajectory involves a
displacement of length smaller than 1 in dimension j, a reasoning similar to the
base case applies (Figure 2-(b)). Concerning direction i, we need, in addition, to
show that the transition guard associated with the last crossing holds. Let t′ denote
the time between these two crossings that occur at y and y′, respectively. There are
two cases:
1. They cross in the same direction, that is, at points y = (y1, . . . , yi−1, r, . . . , yn)

and y′ = (y′
1, . . . , y

′
i−1, r + 1, . . . , yn) (Figure 2-(c)). According to the induc-

tive hypothesis the value of clock z+
i when the trajectory reaches y′ is the time

elapsed since y. Since the i-distance is 1, by Rolle’s theorem there is a deriva-
tive 1/t′ in slice Xi,r and the transition guard on z+

i will be satisfied.
2. The crossing occurs in the opposite direction (Figure 2-(d)), hence clock z+

i is
inactive and the transition is enabled.

The other inductive conditions concerning clock values at time t are maintained by
construction.

The accuracy of the timed model can be further improved by tightening the timing
constraints associated with each cube Xv . Rather then computing them based on the
extremal values of fi in the whole slice Xi,vi we can restrict the optimization of fi

to those cubes on the slice from which Xv is indeed reachable. For example, one can
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Fig. 2. (a) For a trajectory that makes no crossings, the clocks satisfy the invariant of v; (b) For a
trajectory whose last crossing is in dimension i, the clocks satisfy the slice invariants associated
with every j; (c) For a trajectory that crosses in direction +i twice, the clocks satisfy the guard;
(d) For a trajectory that crosses in dimension i in two opposite directions, the guard is trivially
satisfied

observe that if for every j �= i, fj is always positive in the slice, the only cubes in the
slice from which v = (v1, . . . , vi, . . . , vn) can be reached, while staying in the slice, are
those of the form v′ = (v′1, . . . v

′
i, . . . v

′
n) satisfying v′j ≤ vj for every j. A systematic

way to obtain such restrictions is to use the untimed abstraction Ā. Let πi(v) be the set
of cubes v′ such that there exists a run of Ā from v′ to v which stays in Xi,vi . Then

we can replace the slice-based bounds t+i,r, t−i,r, t
+
i,r and t

−
i,r by cube-specific bounds

computed according to (2), but using the extremal values of fi on πi(v). Note that
after deriving the timed automaton, one can apply reachability analysis on the timed
automaton, obtain a subset of πi(v), re-compute the bound according to it and so on.

As the alert reader might have noticed we have not yet specified how to compute
the extremal values of each fi over cubes or slices. For linear systems, extremal values
are obtained on vertices while for arbitrarily nonlinear systems one can apply numerical
optimization algorithms and add some error margins to the obtained results to guarantee
conservativeness. In the sequel we show how the technique specializes for multi-affine
systems, sometimes called multi-linear systems, which are based on functions whose
optimization over hyperrectangles is particularly easy.

Definition 7 (Multi-Affine Functions). A function p : R
n → R is multi-affine if it is a

polynomial such that the maximal degree of each variable in every term is at most one.
A dynamical system S = (X, f) with f = (f1, . . . , fn) is multi-affine if each fi is a
multi-affine function.

The following result, due to Belta and Habets [BH06], provides for simple computation
of of f and f over cubes and slices.
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Theorem 2 (Multi-Affine functions and Rectangles). The extremal values of a multi-
affine function p : R

n → R over a hyperrectangle are obtained on its vertices.

4 Implementation

Our current implementation is still in a prototype stage and it major weakness is that it
works offline, that is, it takes a description of a piecewise3 multi-affine dynamical sys-
tems and generates from it a timed automaton in the IF format, based on an optimized
version of Definition 6. This automaton is then analyzed by the IF toolset. This implies
that the timed automaton is not generated on the fly and its number of discrete states
is almost the size of the grid, slightly reduced using untimed reachability analysis. A
tighter integration between the approximation algorithm and the reachability computa-
tion on timed automata will allow us to restrict the generation of the TA to the reachable
(under timing constraints) part of the state space.

Fig. 3. The transcriptional cascade of [HTW05]

We illustrate the applicability of our approach by analyzing the timed behavior of
a synthetic gene network, the cascade of transcriptional inhibitions built in E.coli as
described in [HTW05] and illustrated in Figure 3. The cascade is made of four genes:
tetR, lacI , cI , and eyfp that code, respectively for, three repressor proteins, TetR, LacI,
and CI, and the fluorescent protein EYFP. The fluorescence of the system, due to the
protein EYFP, is the measured output. The system can be controlled by the addition
or removal of a small diffusible molecule aTc that binds to TetR and relieves the re-
pression of lacI in the growth media. The transient and steady-state behavior of the
system was experimentally compared with that of similar, shorter cascades [HTW05].
It was found that longer cascades have a more pronounced ultrasensitive input/output
responses at steady-state, but longer response times. A modifications of biological pa-
rameters that should improve the ultrasensitive response was proposed in [BYWB07],
but the potential modifications of network response times has not been investigated.

To investigate this question we cut the 5-dimensional state space into more than 2000
cubes, from which we generate a timed automaton. We then use IF to check whether a
significant increase of the fluorescence of the system (from less than 500 to more than
5000 fluorescence units) is obtained in a reasonable time following the addition of aTc
in the growth medium. For the original system, prior to the improvement proposed in
[HTW05], our analysis shows that the required increase is guaranteed to happen in at

3 The extension of our results to piecewise multi-affine systems which are continuous on the
switching boundaries is straightforward.
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Fig. 4. Experimentally observed delay (circuit 3)

most 2820 minutes. On the other hand, for the tuned system, we obtain a significantly
smaller upper bound (1680 minutes, 40% less). This suggests that the proposed modi-
fication improves the response time of the system, in addition to improving its steady
state behavior. We compare these (worst case) time bounds with observations on the
actual system (Figure 4) where the fluorescence of the system reaches the target value
5000 approximatively 200 minutes after addition of aTc. This clearly reveals the con-
servativeness of our approach, an issue that can be addressed by using finer partitions
of the state space.

5 Discussion

We have developed a technique for approximating dynamical systems by timed au-
tomata for the purpose of checking timed properties. The essence of this technique, is
the use of dimension-specific clocks, in contrast with the approach of [SKE00] which
uses one clock (our z) for the whole cube. These ideas are close in spirit to the rectangu-
lar hybrid automata of [HKPV98], in the sense of separating and bounding the dynam-
ics of each dimension. In that work, the emphasis was, however, on exact decidability
which required a reset (initialization) of all continuous variables when a boundary is
crossed, a feature which is not useful in the continuous context.

Our approach performs reasonably well in those parts of the state space where all
variables admit a monotone dynamics and the major challenge is to improve its treat-
ment of those parts of the state space where one or more derivative changes its sign, and
hence admits a zero. In that case, the non existence of a finite upper bound can make it
hard to prove eventuality properties. We also explore that extension of these techniques
to even richer dynamics.
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Abstract. Biologists use diagrams to represent interactions between
molecular species, and on the computer, diagrammatic notations are also
more and more employed in interactive maps. These diagrams are funda-
mentally of two types: reaction graphs and activation/inhibition graphs.
In this paper, we study the formal relationship between these graphs. We
consider systems of biochemical reactions with kinetic expressions, as writ-
ten in the Systems Biology Markup Language SBML, and interpreted by a
system of Ordinary Differential Equations over molecular concentrations.
We show that under a general condition of increasing monotonicity of the
kinetic expressions, and in absence of both activation and inhibition effects
between a pair of molecules, the influence graph inferred from the stoichio-
metric coefficients of the reactions is equal to the one defined by the signs
of the coefficients of the Jacobian matrix. Under these conditions, satis-
fied by mass action law, Michaelis-Menten and Hill kinetics, the influence
graph is thus independent of the precise kinetic expressions, and is com-
putable in linear time in the number of reactions. We apply these results to
Kohn’s map of the mammalian cell cycle and to the MAPK signalling cas-
cade. Then we propose a syntax for denoting antagonists in reaction rules
and generalize our results to this setting.

1 Introduction

Biologists use diagrams to represent interactions between molecular species, and
diagrammatic notations like the ones introduced by Kohn in his map of the mam-
malian cell cycle [2] are also employed on the computer in interactive maps, like
for instance MIM1. This type of notation encompasses two types of information
: interactions (binding, complexation, protein modification, etc.) and regulations
(of an interaction or of a transcription).

The Systems Biology Markup Language (SBML) [3] uses a syntax of reaction
rules with kinetic expressions to define reaction models in a precise way, and more
and more models are described in such a formalism, like in the biomodels.net

� This paper provides a direct presentation and a generalization of one theorem shown
in [1] among other results in the framework of abstract interpretation which is not
used here.

1 http://discover.nci.nih.gov/mim/
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repository. This type of language is well suited to describe interactions (and
in a limited manner their regulations through the notion of modifiers) but not
directly molecule to molecule activations and inhibitions.

On the other hand, formal influence graphs for activation and inhibition have
been introduced in the setting of gene regulatory networks [4] as an abstrac-
tion of complex reaction networks. These graphs completely abstract from the
precise interactions, especially at post-transcriptional level, and retain only the
activation and inhibition effects between genes. In these influence graphs, the
existence of a positive circuit (resp. a negative circuit) has been shown to be a
necessary condition for multistationarity (resp. oscillations) in different settings
[5,6,7,8,9], as conjectured by Thomas [10].

There are nowadays several tools providing different kinds of analyses for
either reaction models or influence graphs. However the only formal relationship
relating the two seems to be the extraction of the influence graph from the
Jacobian matrix derived from the reaction model, when equipped with precise
kinetic expressions and parameter values.

In this paper, we study more systematically the formal relationship between
reaction models and activation/inhibition influence graphs. We consider systems
of biochemical reactions with kinetic expressions, as written in the Systems Bi-
ology Markup Language SBML, and interpreted by systems of Ordinary Differ-
ential Equations over molecular concentrations. We show that under the general
condition of strongly increasing monotonicity of the kinetic expressions, and in
absence of both activation and inhibition effects from one molecule to the same
target, the influence graph inferred from the stoichiometric coefficients of the re-
actions, called the syntactical influence graph, is identical to the influence graph
defined by the signs of the coefficients of the Jacobian matrix, called the dif-
ferential influence graph. Under these conditions, satisfied by mass action law,
Michaelis-Menten and Hill kinetics, the influence graph is thus independent of
the kinetic expressions for the reactions, and is computable in linear time in the
number of reactions.

We show that this remarkable property applies to the transcription of Kohn’s
map of the mammalian cell cycle control [2] into an SBML model of approx. 800
reactions [11]. On this example, the syntactical influence graph is computed in
less than one second, and our equivalence theorem shows that this influence
graph would be the same as the differential influence graph for any standard
kinetics and any (non zero) parameter values. The same property of indepen-
dence from the kinetic expressions holds for the influence graph inferred from the
MAPK signalling model of Levchenko et al. [12]. This influence graph exhibits
positive as well as negative feedbacks that are hidden in the purely directional
cascade of the reaction graph [13], and that have been the reason for an er-
roneous interpretation of Thomas’ rules when applied to the MAPK cascade
in [14].

Finally, we consider generalized reaction rules, where inhibitors can be indi-
cated in the syntax of the rules, and generalize our results to this setting for a
large set of kinetic expressions.
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2 Reaction Models

Following SBML and BIOCHAM [15,16] conventions, a model of a biochemical
system is formally a set of reaction rules of the form e for S => S′ where S
is a set of molecules given with their stoichiometric coefficient, called a solu-
tion, S′ is the transformed solution, and e is a kinetic expression involving the
concentrations of molecules (which are not strictly required to appear in S).

We will use the BIOCHAM operators + and * to denote solutions as 2*A
+ B, as well as the syntax of catalyzed reactions e for S =[C]=> S’ as an
abbreviation for e for S+C => S’+C.

Classical kinetic expressions are the mass action law kinetics

k ∗
n∏

i=1

xi
li

for a reaction with n reactants xi, where li is the stoichiometric coefficient of xi

as a reactant, Michaelis-Menten kinetics

Vm ∗ xs/(Km + xs)

for an enzymatic reaction of the form xs = [xe] => xp, where2 Vm = k ∗ (xe +
xe ∗ xs/Km), and Hill’s kinetics

Vm ∗ xs
n/(Kn

m + xs
n)

of which Michaelis-Menten kinetics is a special case with n = 1.
A set of reaction rules {ei for Si => S′

i}i=1,...,n over molecular concentra-
tion variables {x1, ..., xm}, can be interpreted under different semantics. The
traditional differential semantics interpret the rules by the following system of
Ordinary Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp.
left) member of rule i.

The differential semantics will be the only interpretation of reaction models
considered here. In this paper, we shall not consider the other interpretations of
reaction rules used in BIOCHAM [1], namely the stochastic semantics, where the
kinetic expressions are interpreted as transition probabilities, the rule set as a
continuous-time Markov chain that can be simulated with Gillespie’s algorithm
[17], or the boolean semantics which simply forgets the kinetic expressions and
interpret the rules as a non-deterministic (asynchronous) transition system over
boolean states representing the absence or presence of molecules.
2 xe∗xs/Km is the concentration of the enzyme-substrate complex, supposed constant

in the Michaelian approximation and xe + xe ∗ xs/Km is thus the total amount of
enzyme.
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3 Influence Graphs of Activation and Inhibition

Influence graphs for activation and inhibition have been introduced for the analy-
sis of gene expression in the setting of gene regulatory networks [4]. Such influ-
ence graphs are in fact an abstraction of complex reaction networks, and can be
applied as such to protein interaction networks. However the distinction between
the influence graph and the reaction (hyper)graph is crucial to the application
of Thomas’s conditions of multistationarity and oscillations [4,7] to protein in-
teraction network, and there has been some confusion between the two kinds of
graphs [14].

Here we consider two definitions of the influence graph associated to a reaction
model, and show their equivalence under general assumptions.

3.1 Definition from the Jacobian Matrix

In the differential semantics of a reaction rule model M = {ei for li => ri | i ∈
I} we have ẋk = dxk/dt =

∑n
i=1(ri(xk) − li(xk)) ∗ ei. The Jacobian matrix J is

formed of the partial derivatives Jij = ∂ẋi/∂xj .

Definition 1. The differential influence graph associated to a reaction model is
the graph having for vertices the molecular species, and for edge-set the following
two kinds of edges:

{A activates B | ∂ ˙xB/∂xA > 0 in some point of the space}
∪{A inhibits B | ∂ ˙xB/∂xA < 0 in some point of the space}

Both activation and inhibition edges may exist between two molecular species
in reaction models such as for instance:

k1 ∗ A for A => B
k2 ∗ A ∗ B for A + B => C

We have indeed dB/dt = k1 ∗ A − k2 ∗ A ∗ B and ∂Ḃ/∂A = k1 − k2 ∗ B, hence A
inhibits B and A activates B both belong to the differential influence graph in
such an example.

3.2 Definition from the Stoichiometric Coefficients

Definition 2. The syntactical influence graph associated to a reaction model M
is the graph having for vertices the molecular species, and for edges the following
set:

{A inhibits B | ∃(ei for li => ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) < 0}

∪{A activates B | ∃(ei for li => ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) > 0}

In particular, we have the following influences for elementary reactions of com-
plexation, modification, synthesis and degradation:
α({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,

B inhibits B, A activates C, B activates C}
α({A= [C]=>B})={ C inhibits A, A inhibits A, A activates B, C activates B}
α({A = [B] => }) = { B inhibits A, A inhibits A}
α({ = [B] => A}) = { B activates A}
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The inhibition loops on the reactants are justified by the negative sign in
the Jacobian matrix of the differential semantics of such reactions. Unlike the
differential influence graph, this graph is clearly trivial to compute by browsing
the syntax of the rules:

Proposition 1. The syntactical influence graph of a reaction model of n rules
is computable in O(n) time.

3.3 Over-Approximation Theorem

Comparing the differential influence graph and the syntactical influence graph
requires that the information in the kinetic expressions and in the reactions
be compatible. This motivates the following definition where the first property
forbids the presence of purely kinetic inhibitors not represented in the reaction,
and the second property enforces that the variables appearing in the kinetic
expressions do appear as reactants or enzymes in the reaction.

Definition 3. In a reaction rule e for l=>r, we say that a kinetic expression
e is increasing iff for all molecules xk we have

1. ∂e/∂xk ≥ 0 in all points of the space,
2. l(xk) > 0 if ∂e/∂xk > 0 in some point of the space.

A reaction model has an increasing kinetics iff all its reaction rules have an
increasing kinetics.

One can easily check that:

Proposition 2. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are increasing.

On the other hand, negative Hill kinetics of the form k1/(kn
2 + yn) are not

increasing. They represent an inhibition by a molecule y not belonging to the
reactants, and thus not reflected in the syntax of the reaction.

Theorem 1. For any reaction model with an increasing kinetics, the differential
influence graph is a subgraph of the syntactical influence graph.

Proof. If (A activates B) belongs to the differential influence graph then ∂Ḃ/∂A >
0. Hence there exists a term in the differential equation for B, of the form
(ri(B) − li(B)) ∗ ei with ∂ei/∂A of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0 then ∂ei/∂A > 0 and since ei is
increasing we get that li(A) > 0 and thus that (A activates B) in the syntactical
graph. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A < 0, which is not
possible for an increasing kinetics.

If (A inhibits B) is in the differential graph then ∂Ḃ/∂A < 0. Hence there
exists a term in the differential semantics, of the form (ri(B) − li(B)) ∗ ei with
∂ei/∂A of sign opposite to that of ri(B) − li(B).

Let us suppose that ri(B)− li(B) > 0 then ∂ei/∂A < 0, which is not possible
for an increasing kinetics. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A > 0
and since ei is increasing we get that li(A) > 0 and thus that (A activates B) is
in the syntactical influence graph. ��
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Corollary 1. For any reaction model with an increasing kinetics, the differential
influence graph restricted to the phase space w.r.t. some initial conditions, is a
subgraph of the syntactical influence graph.

Proof. Restricting the points of the phase space to those points that are acces-
sible from some initial states, restricts the number of edges in the differential
influence graphs which thus remains a subgraph of the syntactical influence
graph. ��

It is worth noticing that even in the simple case of mass action law kinetics, the
differential influence graph may be a strict subset of the syntactical influence
graph. For instance let x be the following model :

k1 ∗ A for A => B
k2 ∗ A for = [A] => A

In the syntactical influence graph, A activates B, A activates A and A inhibits
A, however Ȧ = (k2 − k1) ∗ A, hence ∂Ȧ/∂A can be made always positive or
always negative or always null, resulting in the absence of respectively, A inhibits
A, A activates A or both, in the differential influence graph.

3.4 Equivalence Theorem

Definition 4. In a reaction rule e for l=>r, a kinetic expression e is strongly
increasing iff for all molecules xk we have

1. ∂e/∂xk ≥ 0 in all points of the space,
2. l(xk) > 0 if and only if there exists a point in the space s.t. ∂e/∂xk > 0

A reaction model has a strongly increasing kinetics iff all its reaction rules have
a strongly increasing kinetics.

Note that strongly increasing implies increasing.

Proposition 3. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are strongly increasing.

Proof. For the case of Mass action law, the kinetics are of the form:

ei = ki ∗
m∏

l=1

x
li(xl)
l

with ki > 0 and li(xl) ≥ 0. We thus have ∂ei/∂xk = 0 if li(xk) = 0 and
∂ei/∂xk = ki ∗ li(xk) ∗ x

li(xk)−1
k

∏
l �=k x

li(xl)
l otherwise, which clearly satisfies (1)

and (2).
In the case of Hill kinetics (of which Michaelis Menten is a subcase), we have:

ei =
Vm ∗ xn

s

Kn
m + xn

s

for the reaction xs + xe => xp + xe and where Vm = k2 ∗ xtot
e = k2 ∗ (xe +

k1 ∗ xe ∗ xs/(k−1 + k2)) from the steady state approximation. It is obvious that
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∂ei/∂xk = 0 for all xk other than xs and xe since they do not appear in ei and
one can easily check that with all the constants n, k1, k−1, k2 strictly positive,
both ∂ei/∂xe and ∂ei/∂xs are greater than 0 at some point in the space. ��
Lemma 1. Let M be a reaction model with a strongly increasing kinetics,

If (A activates B) is an edge in the syntactical influence graph, and not (A
inhibits B), then (A activates B) belongs to the differential influence graph.

If (A inhibits B) is an edge in the syntactical influence graph, and not (A
activates B), then (A inhibits B) belongs to the differential influence graph.

Proof. Since ∂Ḃ/∂A =
∑n

i=1(ri(B) − li(B)) ∗ ∂ei/∂A and all ei are increasing
we get that ∂Ḃ/∂A =

∑
{i≤n|li(A)>0}(ri(B) − li(B)) ∗ ∂ei/∂A.

Now if (A activates B) is in the syntactical influence graph, but not (A inhibits
B), then all rules such that li(A) > 0 verify ri(B) − li(B) ≥ 0 and there is at
least one rule for which the inequality is strict. We thus get that ∂Ḃ/∂A is a
sum of positive numbers, amongst which one is such that ri(B) − li(B) > 0 and
li(A) > 0 which, since M is strongly increasing, implies that there exists a point
in the space for which ∂ei/∂A > 0. Hence ∂Ḃ/∂A > 0 at that point, and (A
activates B) is thus in the differential influence graph.

For inhibition the same reasoning applies with the opposite sign for the ri(B)−
li(B) and thus for the partial derivative ∂Ḃ/∂A. ��
This lemma establishes the following equivalence result:

Theorem 2. In a reaction model with a strongly increasing kinetics and where
no molecule is at the same time an activator and an inhibitor of the same target
molecule, the differential and syntactical influence graphs coincide.

This theorem shows that for standard kinetic expressions, the syntactical influ-
ences coincide with the differential influences based on the signs of the coeffi-
cients in the Jacobian matrix, when no molecule is at the same time an activator
and an inhibitor of the same molecule. The theorem thus provides a linear time
algorithm for computing the differential influences in these cases, simply by
computing the syntactical influences. It shows also that the differential influence
graph is independent of the kinetic expressions.

Corollary 2. The differential influence graph of a reaction model of n rules
with a strongly increasing kinetics is computable in time O(n) if no molecule is
at the same time an activator and an inhibitor.

Corollary 3. The differential influence graph of a reaction model is independent
of the kinetic expressions as long as they are strongly increasing, if no molecule
is at the same time an activator and an inhibitor.

4 Application to Kohn’s Map of the Mammalian Cell
Cycle Control

Kohn’s map of the mammalian cell cycle control [2] has been transcribed in
BIOCHAM to serve as a large benchmarking example of approx. 500 species
and 800 rules [11].
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On Kohn’s map, the computation of activation and inhibition influences takes
less than one second CPU time (on a PC 1,7GHz) for the complete model,
showing the efficiency of the syntactical inference algorithm. The influence graph
is composed of 1231 activation edges and 1089 inhibition edges.

Furthermore in this large example no molecule is both an activator and an
inhibitor of the same target molecule. Theorem 2 thus entails that the computed
influence graph is equal to the differential graph that would be obtained in any
kinetic model of Kohn’s map for any standard kinetic expressions and for any
(non zero) parameter values.

Since there is a lot of kinetic data missing for such a big model, the possibility
to nevertheless obtain the exact influence graph without having to estimate
parameters or even to choose precise kinetic expressions is quite remarkable,
and justifies the use of purely qualitative models for the analysis of feedback
circuits.

5 Application to the Signal Transduction MAPK
“cascade”

Let us consider the MAPK signalling model of [12]. Figure 1 depicts the reac-
tion graph as a bipartite graph with round boxes for molecules and rectangular
boxes for rules. Figure 2 depicts the syntactical influence graph, where activation
(resp. inhibition) is materialized by plain (resp. dashed) arrows.

This computed graph reveals the negative feedbacks that are somewhat hid-
den in a purely directional signalling cascade of reactions. Furthermore, as no
molecule is at the same time an activator and an inhibitor of a same molecule,
this graph is largely independent of the kinetics of the reactions, and would be
identical to the differential influence graph for any standard kinetic expressions
with any (non zero) kinetic parameter values.

These negative feedbacks, a necessary condition for oscillations [4,8,9], have
been formally analyzed in [13] and interpreted as enzyme sequestration in com-
plexes. Furthermore, oscillations in the MAPK cascade model have been shown
in [18].

The influence graph also exhibits positive circuits. These are a necessary con-
dition for multistationarity [4,7] that has been observed in the MAPK model,
and experimentally in Xenopus oocytes [14]. Note that the absence of circuit in
the (directional) reaction graph of MAPK was misinterpreted as a counterex-
ample to Thomas’ rule in [14] because of a confusion between both kinds of
graphs.

6 Adding a Syntax for Antagonists in Reaction Rules

The over-approximation theorem 1 may suggest to provide a syntax for antag-
onists (i.e. inhibitors) in reaction rules, and generalize the result to this set-
ting. Note that the mixing of mechanistic reaction models with non-mechanistic
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Fig. 1. Reaction graph of the MAPK model of[12]

information on the inhibitors of some reactions, is a common practice in dia-
grammatic notations which often combine reaction edges with activation and
inhibition edges.

Let us denote by (e for l =[/a]=> r) a generalized reaction rule with an-
tagonists a. Reaction rules with catalysts, of the form (e for l =[c/a]=> r),
will remain an abbreviation for (e for l + c =[/a]=> r + c). This notation for
antagonists thus provides a counterpart for denoting the inhibitory effect of some
agent on a reaction, symmetrically to the activation effect of the catalysts of the
reaction.

Definition 5. The syntactical influence graph associated to a generalized re-
action model M is the graph having for vertices the molecular species, and for
edges the following set:
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Fig. 2. Influence graph inferred from the MAPK reaction model

{A inhibits B | ∃(eifor li =[/ai]=> ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) < 0}

∪{A activates B | ∃(eifor li =[/ai]=> ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) > 0}

∪{A activates B | ∃(eifor li =[/ai]=> ri) ∈ M ,
ai(A) > 0 and ri(B) − li(B) < 0}

∪{A inhibits B | ∃(eifor li =[/ai]=> ri) ∈ M ,
ai(A) > 0 and ri(B) − li(B) > 0}

For instance, the set of syntactical influences of the generalized reaction rule A
=[/I]=> B} is {A inhibits A, I activates A, A activates B, I inhibits B}. On the
other hand, note that the definition of the differential influence graph applies to
generalized reaction models as it is based on the kinetic expressions only.
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Definition 6. In a generalized reaction rule e for l =[/a]=> r, a kinetic ex-
pression e is compatible iff for all molecules xk we have

1. l(xk) > 0 if there exists a point in the space s.t. ∂e/∂xk > 0,
2. a(xk) > 0 if there exists a point in the space s.t. ∂e/∂xk < 0.

A generalized reaction model has a compatible kinetics iff all its reaction rules
have a compatible kinetics.

For instance, a kinetics of the form k1*Mdm2/(k2+P53) for the generalized reac-
tion rule Mdm2 =[/P53]=> Mdm2p expressing the phosphorylation of Mdm2 that
is inhibited by P53 (see [19]) is compatible.

Note that for a reaction model, strongly increasing implies compatible. Fur-
thermore, we have:

Theorem 3. For any generalized reaction model with a compatible kinetics, the
differential influence graph is a subgraph of the syntactical influence graph.

Proof. If (A activates B) belongs to the differential influence graph then ∂Ḃ/∂A >
0. Hence there exists a term in the differential equation for B, of the form
(ri(B) − li(B)) ∗ ei with ∂ei/∂A of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0 then ∂ei/∂A > 0, and since ei is
compatible we get that li(A) > 0 and thus that (A activates B) in the syntactical
graph. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A < 0, and since ei is
compatible we get that ai(A) > 0 and thus that (A activates B) is in the
syntactical influence graph.

If (A inhibits B) is in the differential graph then ∂Ḃ/∂A < 0. Hence there
exists a term in the differential semantics, of the form (ri(B) − li(B)) ∗ ei with
∂ei/∂A of sign opposite to that of ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0 then ∂ei/∂A < 0, and since ei is com-
patible we get that ai(A) > 0 and thus that (A inhibits B) is in the syntactical
influence graph. If on the contrary ri(B)− li(B) < 0 then ∂ei/∂A > 0, and since
ei is compatible we get that li(A) > 0 and thus that (A activates B) is in the
syntactical influence graph. ��

This theorem shows that in this setting which mixes reaction rules with infor-
mation on antagonists, the syntactical influence graph still over-approximates
the differential influence graph for any standard kinetics.

7 Conclusion

This work shows that to a large extent, the influence graph of a reaction model is
independent of the kinetic parameters and kinetic expressions, and that it can be
computed in linear time simply from the syntax of the reactions. This happens for
strongly increasing kinetics such as classical mass action law, Michaelis-Menten
and Hill kinetics, when no molecule is at the same time an activator and an
inhibitor of a same target molecule.
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The inference of the syntactical influence graph from a reaction model has been
implemented in BIOCHAM, and applied to various models. On a transcription of
Kohn’s map into approx. 800 reaction rules, this implementation shows that no
molecule is at the same time an activator and an inhibitor of a same molecule,
and therefore, our equivalence theorem states that the differential influence graph
would be the same for any standard kinetics with any parameter values.

On the MAPK signalling cascade that does not contain any feedback reaction,
the implementation does reveal both positive and negative feedback circuits
in the influence graph, which has been a source of confusion for the correct
application of Thomas’ rules. Furthermore, in this example again, no molecule
is at the same time an activator and an inhibitor of another molecule, showing
the independence of the influence graph from the kinetics.

Acknowledgement. This work benefited from partial support of the European
Union FP6 Network of Excellence REWERSE http://www.rewerse.net, and
Strep TEMPO http://www.chrono-tempo.org.
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Abstract. Rule-based modelling is particularly effective for handling
the highly combinatorial aspects of cellular signalling. The dynamics is
described in terms of interactions between partial complexes, and the
ability to write rules with such partial complexes -i.e., not to have to
specify all the traits of the entitities partaking in a reaction but just
those that matter- is the key to obtaining compact descriptions of what
otherwise could be nearly infinite dimensional dynamical systems. This
also makes these descriptions easier to read, write and modify.

In the course of modelling a particular signalling system it will often
happen that more traits matter in a given interaction than previously
thought, and one will need to strengthen the conditions under which that
interaction may happen. This is a process that we call rule refinement
and which we set out in this paper to study. Specifically we present a
method to refine rule sets in a way that preserves the implied stochastic
semantics.

This stochastic semantics is dictated by the number of different ways
in which a given rule can be applied to a system (obeying the mass ac-
tion principle). The refinement formula we obtain explains how to refine
rules and which choice of refined rates will lead to a neutral refinement,
i.e., one that has the same global activity as the original rule had (and
therefore leaves the dynamics unchanged). It has a pleasing mathematical
simplicity, and is reusable with little modification across many variants of
stochastic graph rewriting. A particular case of the above is the derivation
of a maximal refinement which is equivalent to a (possibly infinite) Petri
net and can be useful to get a quick approximation of the dynamics and
to calibrate models. As we show with examples, refinement is also useful
to understand how different subpopulations contribute to the activity of
a rule, and to modulate differentially their impact on that activity.

1 Semi-liquid Computing

To the eye of the computational scientist, cellular signalling looks like an intrigu-
ing computational medium. Various types of agents (proteins) of limited means
interact in what, at first sight, may seem to be a liquid universe of chance encoun-
ters whre there is little causality. But in fact a rich decentralized choreography of
bindings (complex formation) and mutual modifications (post-translational mod-
ifications) can be observed. Transient devices (complexes) are built by agents to
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integrate, convey, and amplify signals and channel them to the appropriate out-
puts (transcriptional regulation). The intricate pathways of the response to the
epidermal growth factor (EGF) sketched in Fig. 1 are a well-studied and well-
modelled example [1]. This universe of semi-liquid computing is brought about
by a surprisingly small number of elementary interactions. It sits somewhere in
between the worlds of the random graphs of statistical physics [2] which perhaps
lack expressivity, and the solid colliding sphere models of chemical kinetics [3]
which perhaps lack programmability.

The generativity of those systems, that is to say the number of different non-
isomorphic combinations (aka complexes or species) that may come to exist
along different realizations of the implied stochastic process, may well be enor-
mous, but this does not say how complex those systems really are. A lot fewer
rules than there are reactions (interactions between complete complexes) may
be good enough to describe some of them. For instance the sketch of Fig. 1 once
properly formalized uses about 300 rules whereas it produces about 1040 unique
combinations. One sees that the number of rules is a more meaningful estimate
of its inherent complexity.

Rule-based languages [4,5,6,7,8,9,10,11], and more generally process algebraic
approaches to modelling [12,13,14,15,16,17,18,19], because they can express such
generic interactions, can work around this apparent descriptive complexity and
achieve compact descriptions. Let us also mention, although we will not treat
this aspect of the question here, that another benefit of rule-based modelling is
that one can trace the evolution of a system at the level of agents (or individuals)
and explore the causal relationships between events occurring in a system [6].

The difference between an assembly of agents with random uncorrelated en-
counters and a signalling system is that there is a causal structure channelling the
interactions towards a particular response. Typically a binding will not happen
before one or both of the bindees has been modified. Combining those micro-
causal constraints into a coherent pathway is a programming art that we don’t
master or even understand yet, but one that signalling systems have been honing
for a considerable time. Rule-based modelling incorporates such causality con-
straints in the rules themselves by using partial complexes: not everything needs
to be described in a rule, only the aspects of the state of a complex which matter
for an event to happen need to be specified. That is the difference between a
reaction between complete entities, and a rule between partial ones. As said, this
reliance on partial complexes allows to capture compact descriptions and work
around the huge numbers of combinations one would have to contemplate (or
neglect) otherwise. The more detailed the partial complex, that is to say the less
partial, the more conditions must be met for a particular event to happen.

The purpose of the present paper is to understand better the mechanics of
refinement, that is to say the process by which one can make a complex less
partial, or equivalently a rule more demanding. We specifically consider the
problem of replacing a rule with a family of refined rules which will exhibit
the same collective activity, and will therefore generate an identical stochastic
behaviour. Note that there are really two questions in one: one is to define what



Rule-Based Modelling, Symmetries, Refinements 105

Fig. 1. A informal sketch of the many interactions involved in the ERK/AKT pathway
responding to an EGF stimulus. The corresponding rule-based model generates about
1040 different species.

constitutes a good family of refined rules, another is to define their rates so
as to preserve the underlying dynamics. It turns out that the latter question
has an intimate connexion with the notion of symmetry, and what becomes of a
symmetry group of a partial complex under refinement. The solution we propose
to the former question can certainly be made to cover more cases (of which more
later).

Seeing how the notion of partial complex is central to rule-based modelling1

it certainly makes sense to try to theorize around it, as we start doing in this
paper. But there are also very concrete reasons to do so. First it will often happen
that in a modelling situation a rule has to be revised because people come to
believe that its rate depends on more information about the context than the
rule actually provides. A typical example would be that a post-translational
modification increases or decreases the likelihood that an agent will bind another
one. Replacing a rule with a bunch of more specific ones, in order to express those

1 An aside: the name rule-based is a little unfortunate since just about any computa-
tional formalism is rule-based but that is the name under which this approach has
become known in the biological modelling community.
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context-dependent modulations of the rule activity, is a transformation which
we call a kinetic refinement of the rule. It can be usefully decomposed as first
introducing a neutral refinement -as defined in this paper- and second changing
those base rates to achieve the modulation of interest. In this application the
neutral refinement, that is to say the choice of refined rates that will not change
the behaviour, serves as a baseline. One needs it to know where to start from. In
fact even when one does not actually modulate the rates of the refined rules and
keeps the refinement neutral, the procedure allows one to peek into the relative
contributions of the various subpopulations of complexes that can intervene in
an instance of the original unrefined rule (see the examples at the end of the
next section). So for both reasons it is important to understand how to compute
this baseline which is the question we address here.

Maximal refinements are of special interest. This is the case where one re-
places a rule with all its ground instances (in general an infinite set) where only
complete complexes take part. Such a transformation when applied to all rules
in a rule set will obtain a set of multiset rewriting rules, that is to say a (possibly
infinite) Petri net. This transformation will be unfeasible in general, owing to
the combinatorial explosion mentioned earlier, because the obtained Petri net,
even if finite in principle, will be simply too large to be written (this is not even
a problem of computational complexity but of mere size of the output). How-
ever it is easy to imagine running truncated versions of a complete expansion
using an ODE semantics. That could be useful for model calibration, and similar
exploration mechanisms that are particularly demanding in terms of the num-
ber of simulations required while not necessarily needing the accuracy an exact
expansion would provide.

We start with a brief presentation of Kappa which is the rule-based language
we shall use in this paper. This is an occasion to get familiar with some of the
notations, but is in no way a formal presentation. Then we turn to two simple ex-
amples of refinement to get a more concrete sense of what the notion of refinement
is trying to achieve and how it is relevant to practical modelling questions. Expla-
nations given in this paper, further than the ones given above, about the relevance
of Kappa for the actual practical modelling are all to be found in the next Section.
The reader interested in more can consult Refs. [6] and [7].

After this presentation the mathematical development reintroduces a simpli-
fied Kappa, this time in a completely formal and algebraic way which is con-
ducive to a study of refinement which will be of general import and not tied in
specific syntactical details. In fact the refinement formula we obtain is of general
validity and assumes nothing about the arity of the rule to be refined, and actu-
ally assumes little about the rewriting framework itself. We are conscious that
this incurs some cost to the reader unacquainted with basic category-theoretic
notions in that some heavy-looking machinery is involved. However, mathemat-
ically it is natural, and hopefully at this stage the preliminary informal explana-
tions will have clarified what is achieved in the mathematical development. After
the derivation of the refinement formula for partial complexes first, and then for
rules, we explain how to sharpen this result by considering more inclusive notions
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of refinements. Only the first refinement formula is treated in detail; its exten-
sions are just sketched.

2 A Brief Guide to Kappa

Let us start with an informal and brief account of our modelling language. In
Kappa, agents (think of them has idealized proteins) have sites and their sites
can be used to bind other sites (at most once), and can also hold an internal state.
The former possibility accounts for domain-mediated complex formation, while
the latter accounts for post-translational modifications. Accordingly one distin-
guishes three types of (atomic) rules for binding, unbinding, and modification. In
the full language one also considers agent creation and deletion (see later the for-
mal presentation), and it is possible to combine actions in a single rule.

Note that a binding rule requires two distinct agents, each with a free (i.e.,
not already bound) site, which bind via those sites. In other words, it is not
possible to bind a site more than once.

A Kappa model consists of (i) an initial solution that declares the names and
all sites (with default state values for all sites we wish to carry a state) of the
relevant agents; and (ii) a rule set specifying how the initial solution may evolve.
We will see an example very soon.

The behaviour of a model is stochastic. Given a global state of the system
one assigns to each rule a likelihood to be applied which is proportional to the
number of ways in which this rule can be applied, and its intrinsic rate (the rate
is a measure of how efficient a rule is at turning a chance encounter of reagents
into an actual reaction). In the particular case where agents have no sites at all,
one has a Petri net, and the dynamics is none other than the mass action law
put in Gillespie form [3].

2.1 A Simple Cascade

As a way of getting more familiar with the notation we can consider a simple and
yet ubiquitous motif of cellular biology that consists of one protein (typically an
enzyme or kinase) covalently modifying another. Let us call them S (as signal)
and X which we are going to assume have each a unique site s. That situation
can be easily expressed by the following rule triplet:

S(s), X(su) → S(s1), X(s1
u)

S(s1), X(s1) → S(s), X(s)
S(s1), X(s1

u) → S(s1), X(s1
p)

where we represent a binding between two sites by a shared exponent, s1, and
the internal state of a site as a subscript to this site, su or sp, where (u) p is a
mnemonic for (un-) phosphorylated.

One can add a second and similar triplet for X and a new agent Y :

X(sp), Y (su) → X(s1
p), Y (s1

u)
X(s1), Y (s1) → X(s), Y (s)
X(s1), Y (s1

u) → X(s1), Y (s1
p)
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Fig. 2. Low off rate (k = 0.1): the activated Y s tend to stay attached to their activators
X (the XY p ‘sleep’ curve dominates the XY u ‘ready’ one); as a consequence the
production of activated Y is slowed down

Fig. 3. Medium off rate (k = 10): most of the XY complexes have now an inactivated
Y (the XY u ‘ready’ curve now dominates); the production of activated Y is visibly
faster

Note that X has to be activated and Y inactivated for the binding and subse-
quent activation of Y to happen. This ensures in particular that no Y is activated
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in the absence of a signal S (an example of the causal constraints we were allud-
ing to earlier). Such cascades regularly arise in real signalling networks. Referring
back to the actual EGFR pathway in Fig. 1 we see the famous examples of the
Ras, Raf, MEK and ERK cascade, and the PIP3, PDK1, and AKT one.

What about the dynamical behaviour of such a simplified cascade? We would
like to understand how the cascade throughput, that is to say the rate of produc-
tion of the active form of Y , depends on the rate k at which X detaches from
Y (hereafter the XY off-rate), namely the rate of the rule r := X(s1), Y (s1) →
X(s), Y (s) defined above.

Well intuitively, with too small an off-rate (high affinity binding), X will tend
to remain bound to Y even after the Y has been activated. Whereas with too
large an off-rate (low affinity binding), X will often detach from Y before having
activated Y . Somewhere in between, an optimal choice of k will strike the right
balance and maximise the rate of activation of Y .

This is something that we can verify numerically. Suppose one starts with
15S(s) + 60X(su) + 120Y (su) as an initial state, and suppose further all other
rules have a rate of 1. As expected, we see in Fig. 2 where k = 0.1, that the
activation of Y is slower than in Fig. 2, where k = 10; with an even higher
k = 1000 the activation rate goes down again (Fig. 4).

This demonstrates the tension between binding loosely, and “not always get-
ting the job done”, and binding tightly which amounts to “sleeping on the job”.
It also nicely shows that the cascade throughput depends on a lot more than
just the rate attached to the rule performing that activation.

Now our off-rate k measures how likely it is that X and Y will detach -
independently of their respective internal states. If we were to optimize the cas-
cade throughput it would be natural to let the off-rate depend on the state
of Y . In terms of rules, all we have to do is to split the unbinding rule under
consideration into two subcases:

ru := X(s1), Y (s1
u) →ku X(s), Y (su)

rp := X(s1), Y (s1
p) →kp X(s), Y (sp)

with respective rates ku, kp. One calls the substitution of r with such more
specific rules ru, rp a refinement. If in addition the new rates are both taken
equal to k, then in this simple case evidently the behaviour of the system will be
unchanged. That special case, where nothing changes in the dynamics, is what
we call a neutral refinement.

If one favours unbinding from active Y , then clearly this allows X both to bind
long enough to Y to activate it and then to unbind quickly to maximize through-
put. In particular the combination kp = ∞ (detach as soon as activated), and
ku = 0 (never detach before activation) leads to the best possible throughput,
all other things being equal (see Fig. 5).

2.2 A Less Obvious Refinement

Here is a second example which shows that choosing the rates of the refined rules
and obtaining a neutral refinement may require some ingenuity.
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Fig. 4. High off rate (k = 1000): the production of activated Y has gone down again

Fig. 5. Split rate (ku = 0, kp = ∞): there is no XY p anymore; the production of
activated Y is optimal

Consider two agent types B, C each with only one site x, and define a family
of systems x(n1, n2) consisting of n1 single Cs and n2 dimers C(x1), B(x1). In
other words set x(n1, n2) := n1C(x) + n2(C(x1), B(x1)). Now consider the rule
r := C(), B() →1 C() with rate 1. Note that r does not mention x at all (we
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say that both agents have an empty signature in this case). This means that r
applies irrespective of the binding state of x in B and C. Both agents could be
free, or bound, or even bound together. Whichever is the case, the effect of the
rule will be the same, namely to delete a B and to bring x(n1, n2) to a new state
x(n1 + 1, n2 − 1). This supposes n2 > 0. If on the other hand n2 = 0 then there
is no B left in the system and no further event is possible (deadlock).

Now we would like to refine r into mutually exclusive sub-cases depending
on the relationship in which C and B stand; specifically we want to use the
following three refined rules:

r1 := C(x1), B(x1) →1 C(x)
r2 := C(x1), B(x1), C(x2), B(x2) →2 C(x), C(x2), B(x2)
r3 := C(x1), B(x1), C(x) →1 C(x), C(x)

Each of them is a particular case of r in the sense that their left hand sides
embed (sometimes in more than one way) that of r (see below the notion of
morphism). Intuitively, r1 is the sub-case where B, C are bound together, r2 is
the sub-case where they are both bound but not together, and r3 is the sub-case
where B is bound but C is free. Given the particular family of states x(n1, n2)
we are dealing with, those seem to cover all possible cases, and to be indeed
exclusive.

Define the activity of a rule as the number of possible ways to apply the rule
multiplied by its rate. This determines its likelihood to apply next and only
depends on the current state of the system. Now we have chosen for each refined
rule a rate (indicated as a subscript to the reaction arrow), and in particular
r2 was assigned a rate of 2. We claim this is the unique correct choice if one
wants the stochastic behaviour of the system to be preserved by the refinement.
Figure 6 shows a run of the refined system with x(0, 100) as the initial state.
The y axis traces the activity of all rules including the base one r.

We see that indeed at all times the refined activities add up to the original
one (the top curve).

There are other things worth noticing. Firstly, r1 keeps a low probability that
decreases linearly during the simulation since its activity is exactly the number
of dimers n2; so suppressing r1 would change very little to the behaviour of
the system. Secondly, r2 dominates the early events, since near the initial state
there are only dimers, and no free Cs yet; however, as time passes there will
be more of those free Cs, and the corresponding rule r3 will come to dominate.
Hence we see that the relative importance of the sub-cases changes over time,
and that refinement can be used as a way of profiling the contribution various
subpopulations of agents make to a given type of event.

The corrective factor applied to r2 accounts for two opposite effects: on the
one hand r2 embeds r in more than one way which tends to scale the rate of r2
upwards, on the other hand r2 is more symmetric than r and that would tend
to scale the rate of r2 downwards.

What we are interested in is to handle the general case, i.e., to explain what
constitutes a good set of refined rules as r1, r2, and r3 above, and how one can
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Fig. 6. The activities of the refined rules r1, r2, and r3 add up exactly to that of the
initial rule r (top curve)

choose the refined rates in a way that the global activity is preserved. We will
return to the example once we have a general solution.

3 Rule-Based Modelling

To give proper generality and portability to our study, we will frame it into some
simple categorical language where a system is seen as an object x and the various
ways a rule r may apply to x are identified using a notion of morphism f from
r’s left hand side to x.

As said we shall also simplify the Kappa syntax in two respects. First, we sup-
pose agents have no internal states. Second, we suppose no wildcards are used in
left hand sides, e.g., expressions like A(x ) meaning x is bound to some unspec-
ified other site, are not considered. The former simplification is only a matter
of readability, as internal values offer no difficulty. The latter simplification is
more significant, and we will see later in our development that reintroducing
wildcards allows us to strengthen our main result. With these simplifications we
can give a syntax-less presentation of Kappa that will facilitate the derivation
of the refinement formula.

We suppose given two sets A and S of agent names and sites.
A matching over a set X is an irreflexive and symmetric binary relation on X

such that no element is in relation with more than one element.
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Definition 1. An object is a quadruple (V, λ, σ, μ) where:
– V is a set of nodes,
– λ ∈ AV assigns names to nodes,
– σ ∈ P(S)V assigns sets of sites to nodes,
– μ is a matching over

∑
v∈V σ(v).

The matching represents bindings, and hence any given site can be bound at
most once. A node however can be bound many times via different sites.

We define (u, x) ∈ μ as shorthand for ∃(v, y) : (u, x, y, v) ∈ μ, and say u, x is
free when (u, x) �∈ μ, bound when (u, x) ∈ μ.

The simplest non-empty object is a single node named A with no sites and
therefore no binding. In the preceding section we wrote A() for this object. There
we also introduced a textual notation to designate objects where bindings are
indicated by exponents.

Note that we sometimes use the same family of symbols x, y, etc. for sites
and objects. Hopefully this will not cause any confusion since they are entities
of a very different nature.

We define a signature as a map Σ : A → S; this can be used to constrain the
set of sites per agent type. We write x ≤ Σ if for all v ∈ Vx, σx(v) ⊆ Σ(λx(v));
likewise we write Σ ≤ x if for all v ∈ Vx, Σ(λx(v)) ⊆ σx(v), and x : Σ when
x ≤ Σ ≤ x.

When x : Σ for some Σ, we say x is homogeneous, which means all agents of
the same type in x use exactly the same set of sites.

Definition 2. An arrow (V, λ, σ, μ) → (V ′, λ′, σ′, μ′) is a map f : V → V ′ such
that
– 1) f preserve names: λ′ ◦ f = λ
– 2) f preserve sites: σ′ ◦ f ⊇ σ
– 3a) f preserve edges: (u, x, y, v) ∈ μ ⇒ (f(u), x, y, f(v)) ∈ μ′

– 3b) f reflects edges: (f(u), x) ∈ μ′, x ∈ σx(u) ⇒ (u, x) ∈ μ
– 4) f is a monomorphism

This then is the category of graphs with sites we shall work with. We also call
arrows morphisms sometimes; we write [x, y] for the arrows from x to y; iso[x, y]
for the isomorphisms (meaning invertible arrows), and therefore [x, x] = iso[x, x]
denotes the set of automorphisms (or symmetries) of x; we say that y embeds x
when [x, y] �= ∅.

Define the image of f ∈ [x, y] as Im(f) := {f(v), x; v ∈ V, x ∈ σ(v)}.
Note that Im(f) is but a subset of

∑
v∈V σ′(f(v)), and only sites in Im(f)

are mentioned in the arrow-defining clauses above.
One has obviously a forgetful functor to the category of graphs and graph

morphisms, and that allows us to import the usual graph-theoretical vocabulary
of connected components and paths, which we will freely use in the sequel. Note
that, from the point of view of graphs, the reflectivity condition 3b) above does
not really make sense, one really needs sites to express edge reflection. Moreover
the rather stringent notion of arrow constrains the homsets [x, y]:
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Lemma 1 (rigidity). Suppose x is connected, then any non-empty partial in-
jection f from Vx to Vy extends to at most one morphism in [x, y].

Proof: If f is strictly partial, that is to say Vx �dom(f) is not empty, pick a v in
there such that for some node w ∈ dom(f), and some sites x, y, (w, y, v, x) ∈ μx.
This is always possible because x is connected. Then, either (f(w), y, v′, x) ∈ μy

for some v′ ∈ Vy , and by 3a) one must extend f as f(v) = v′, or there is no such
extension. �
Clearly being a monomorphism, i.e., being post-cancellable, is equivalent to
being a one-one map. On the other hand there are far more epimorphisms than
surjections:

Lemma 2 (epis). A map h ∈ [x, y] is an epimorphism iff every connected
component of y intersects f(x); that is to say for all connected component cy ⊆ y,
h−1(cy) �= ∅.

Proof: Suppose f1h = f2h for h ∈ [x, y], fi ∈ [y, z], and let cy ⊆ y be a connected
component of y such that h−1(cy) �= ∅. Pick u such that h(u) ∈ cy, then
f1(h(u)) = f2(h(u)) and by the preceding lemma f1/cy = f2/cy. �
We write [x, y]e ⊆ [x, y] for the epis from x to y.

4 Object Refinements

Now that we have our basics in place we turn to the first question of what
constitutes a refinement of a (partial) object s. As we have seen in the example,
a refinement of s is intuitively a collection of objects ti that embed s and such
that any embedding in an object of higher signature x (i.e., that has more
sites everywhere) can be unambiguously attributed to one ti. We first make this
intuition into a real definition and then proceed to define the refinements of
rules.

Definition 3 (factorisation). One says an object t factors f ∈ [s, x] if f = γφ
for some φ, γ ∈ [s, t]e × [t, x]; φ, γ is called a factorisation of f via t.

The first thing to notice is that one cannot ask for unique factorisations.
Suppose given a factorisation φ, γ ∈ [s, t]e×[t, x] of f via t and an isomorphism

α ∈ [t, t′]. Define φ′, γ′ := αφ, γα−1 ∈ [s, t′] × [t′, x]; this new pair verifies γφ =
γ′φ′, and since φ′ is clearly an epimorphism, the pair is also a factorisation of f
via t′.

s
φ ��

φ′

��

t

γ

��

α

��
t′

γ′
�� x

(1)

In this case we will say that φ, γ and φ′, γ′ are conjugate under α, and write
φ, γ �tt′ φ′, γ′. We also write [s, t] ×[t,t] [t, x] for the quotient of [s, t] × [t, x]
under �tt; this notation is justified by the following:
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Lemma 3 (conjugates). The equivalence relation �tt has |[s, t] × [t, x]|/|[t, t]|
classes.

Proof: Suppose, using the notations of (1), that φ, γ �tt′ φ′, γ′, then this uniquely
determines α since γα−1 = γα′−1 implies α = α′ by γ being a monomorphism.
In particular the set of conjugates of φ, γ over the same t is in one-one corre-
spondence with [t, t]. �
Note that being an epimorphism is stable by conjugation so we can say that a
class is an epimorphism, and we can restrict the equivalence to [s, t]e × [t, x], so
the version of the Lemma relative to [s, t]e also holds.2

Unicity of factorization is then to be understood up to isomorphisms; further-
more, even if we select one representative ti per isomorphism class, unicity is up
to automorphisms of each of the representative ti.

Definition 4 (object refinement). Given s, Σ such that s ≤ Σ, a refine-
ment of s under Σ, written Σ(s), is a set of objects obtained by selecting one
representative in each isomorphism class defined by {t | t : Σ, [s, t]e �= ∅}.

Note that the actual choice of representatives does not matter, but we do have
to choose one for our counting purposes.

Another noteworthy fact is that Σ(s) in general will be infinite. However in
practice one may get information about the reachables of the system which will
allow to control the size of the expansion [4]; indeed it is not necessary to include
ts which are not reachable, and we took advantage of this in the example of the
first section.

Lemma 4 (injectivity). Given Σ, s, x such that s ≤ Σ ≤ x the composition
map from the disjoint sum

∑
t∈Σ(s)[s, t]

e ×[t,t] [t, x] to [s, x] is injective.

Proof: Suppose given two factorisations f = γφ = γ′φ′ via t and t′ as in (1).

v ∈ s
φ ��

φ′

��

t ⊇ c  φ(v)

γ

��

α

��
φ′(v) ∈ c′ ⊆ t′

γ′
�� x

(2)

Pick a connected component c ⊆ t, such that φ(v) ∈ c for some v ∈ s. Call c′ ⊆ t′

the connected component of φ′(v) in t′. By construction γ(c) and γ′(c′) intersect
2 This prompts a more general argument for the restriction of that Lemma to the case

of [s, t]e. Suppose given φ, γ as above, one has a map from [t, t] to the class [φ, γ] in
[s, t] × [t, x]: α �→ α · (φ, γ) := φα, α−1γ (an action of the group [t, t] on [s, t] × [t, x]);
this map is surjective by definition of conjugation; it is also injective because γ is a
mono. Now if in addition φ is an epi, it is injective for a second reason, namely φ
is an epi (α1φ = α2φ implies α1 = α2). This seems to indicate that one can relax
the monomorphism requirement in the ambient category and still develop the same
theory.
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at γφ(v) = f(v) = γ′φ′(v). It is easy to see that they both are Σ-homogeneous.
This means they must be equal.

Indeed suppose w ∈ γ(c) is a node which is directly connected to γ(c) ∩
γ′(c′), meaning w is such that (u, x, y, w) ∈ μx, for some u ∈ γ(c) ∩ γ′(c′) and
(u, x), (w, y) ∈ Im(γ). Because c′ is Σ-homogeneous, u, x ∈ Im(γ′), ie x is also a
site of the (unique) antecedent of u in c′, which we can write x ∈ σt′γ′−1(u). By
condition 3b) this site cannot be free, and by 3a) it must be bound to γ′−1(w), y,
so w ∈ γ′(c′). Since γ(c) is connected, γ(c) ∩ γ′(c′) must contain γ(c), and by
symmetry γ′(c′).

Hence γ(c) = γ′(c′), therefore c and c′ are isomorphic. In fact, since φ is an
epi, we can repeat the above for any connected component in t, and therefore t
embeds in t′ (it is readily seen that the assignment of a c′ to a c above is injective),
and by symmetry they must be isomorphic under a certain isomorphism α. By
definition of Σ(s) we have picked exactly one representative in each isomorphism
class, therefore t = t′, α ∈ [t, t], and the two factorizations are conjugate under
α. �

Theorem 1. Given Σ, s, x such that s ≤ Σ and x : Σ:

[s, x] �
∑

t∈Σ(s)

[s, t]e ×[t,t] [t, x]

Proof: From the preceding lemma we know the composition map is injective, so
all there remains to prove is that it is surjective.

Consider f ∈ [s, x], define f(s) := {u | ∃x : (u, x) ∈ Im(f)} ⊆ Vx, and write
[f(s)] for the connected closure of f(s) in x. We claim there is a t ∈ Σ(s) which
is isomorphic to [f(s)]. Indeed every node in [f(s)] has a signature in accordance
with Σ because x : Σ, and [f(s)] embeds s since f(s) does (via f). �

Using Lemma 3 in addition we can use the above theorem to obtain:

Corollary 1. Given Σ, s, x such that s ≤ Σ and x : Σ, one has:

|[s, x]| =
∑

t∈Σ(s)

|[s, t]e|/|[t, t]| · |[t, x]| (3)

There are several things worth noticing about the theorem and its numerical
form as a corollary.

First, the |[s, t]e|/|[t, t]| is a static term that can be computed once and for all,
and which we shall use to determine the rule rates. The positive contribution
[s, t]e is rather intuitive since the more copies of s one finds in t the higher
the contribution of t to the number of instances of s should be; the negative
contribution |[t, t]| is less intuitive however.

Second, one cannot relax the homogeneity condition on x and ask only Σ ≤ x.
That would break the easy part of the proof, namely that of surjectivity. Here
is an example; set s := A(x) < Σ := A �→ {x, y} < A(x, y1, z), A(x, y, z1) =: x.
Choose f to be the ‘left’ morphism mapping s’s unique A to A(x, y1, z) in x;
then [f(s)] = x and no t ∈ Σ(s) can factorize f because the (y, z) binding is not
reproducible in t, because z �∈ Σ(A).
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However, one can modify the notion of object (and accordingly that of arrow)
by introducing new partial objects such as t = A(x, y¬Σ), meaning y binds
an otherwise unspecified non-Σ site (ie A, y is bound to some B, z such that
z �∈ Σ(B)). This t is homogeneous and factorizes the f above. This variant allows
to recover surjectivity and extend our decomposition theorem above. Similar
wildcard expressions are already present in the actual syntax of Kappa, and it
is amusing to see that those convenient notations also have a theoretical status.

This begs a last remark, namely that we are the ones choosing how to relate
the base object s and its refinement. For example, here, we are using epis to
relate them. Below we will allude to a finer-grained correspondence based on
using a pointed version of the ambient category that will allow us to go beyond
the homogeneity requirement in another way. But before we do that we will
return to the example of the first section.

4.1 Example Continued

We can now reconsider our initial example. Set s := C(), B(), for the left hand
side of the base rule r, and ti for that of the refined rule ri:

t1 := C(x1), B(x1)
t2 := C(x1), B(x1), C(x2), B(x2)
t3 := C(x1), B(x1), C(x)

Set also Σ := B, C �→ {x}. Clearly s < Σ and ti, and x(n1, n2) are Σ-
homogeneous. Besides due to the particular form of x(n1, n2), the tis are the
only elements in Σ(s) that x(n1, n2) embed. Using Lemma 3 we get:

|[s, x(n1, n2)]| = n2(n1 + n2)
|[s, t1]e ×[t1,t1] [t1, x(n1, n2)]| = |[s, t1]e[t1, x(n1, n2)]|/|[t1, t1]| = 1.n2/1 = n2
|[s, t2]e ×[t2,t1] [t2, x(n1, n2)]| = |[s, t2]e[t2, x(n1, n2)]|/|[t2, t2]| = 2.n2(n2 − 1)/2
|[s, t3]e ×[t3,t1] [t3, x(n1, n2)]|= |[s, t3]e[t3, x(n1, n2)]|/|[t2, t2]|=1.n1n2/1 = n1n2

and the corollary correctly predicts n1n2 + n2(n2 − 1) + n2 = n1(n1 + n2).

4.2 Pointed Refinements

Let us look at an example which breaks injectivity. This is the kind of com-
plication the theorem is staying cautiously away from by asking the ts to be
homogeneous.

The set of nodes Vs = {1, 2} is represented as subscripts to agents below; the
subscripts to the y sites, y0 and y1, denote bindings to agents with only one site
and different names (to save space):

s = A(x1)1, A(x1)2
I ��

I

��

t0 = A(x1, y0)1, A(x1)2

I

��

I

��
t1 = A(x1)1, A(x1, y1)2

I �� x = A(x1, y0)1, A(x1, y1)2
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If one refers to the situation of (1), the unique possible candidate conjugating
α, i.e., the unique diagonal that makes both triangle commute, fails to be a
morphism. That means that t0, t1 provide really distinct extensions of f(s) in x
and form an ambiguous decomposition of s. Indeed, applying (wrongly since the
tis are not homogeneous) the refinement formula (3) betrays this redundancy
problem since |[s, x]| = 2 while |[s, ti]|/|[ti, ti]||[ti, x]| = 2.

To deal with a case such as this one, one needs to break the symmetry. To
do this, a possibility is to work out the static part of the refinement formula in
a pointed subcategory where objects have in addition to their usual structure a
distinguished node per connected component, and arrows are asked to preserve
them. Then one can replace homogeneity by a weaker requirement, namely that
across all expansions of s no two agents with the same coordinates with respect to
a distinguished node differ in their signature. In the example above, that would
force to decide whether the additional binding is to sit on the distinguished node
or not, and then both extensions would become truely distinct and unambiguous.
Obviously a little more work is needed to say with complete confidence that this
will work, but it seems it will.

5 Rule Refinements

Now that we know how to refine objects, we will proceed to the case of rules.

5.1 Action, Rules, Events

An atomic action on s is one of the following:
- an edge addition +(u, x, y, v)
- an edge deletion −(u, x, y, v)
- an agent addition +(A, σ) with A a name, σ a set of free sites
- an agent deletion −(u) with u ∈ Vs, v ∈ Vs, x ∈ σs(u), and y ∈ σs(v).

An action on s is a finite sequence of atomic actions on s. An atomic action
is well defined on s:
- if α = +(u, x, y, v), when both (u, x) and (v, y) are free in s,
- if α = −(u, x, y, v), when (u, x, y, v) ∈ μs.

This notion extends readily to non-atomic actions; we consider only well-
defined actions hereafter.

Definition 5. A rule is a triple r = s, α, τ where:
- s in an object,
- α is an action on s,
- and τ a rate which can be any positive real number.

We write α · s for the effect of the action α on s.
Given f ∈ [s, x] and α there is an obvious definition of the transport of α

along f , written f(α), and it is easy to verify that f(α) is itself a well-defined
action on x if α is a well-defined action on s (condition 3b) is crucial though).
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Definition 6. A set R of rules defines a labelled transition relation:

x −→s,α,τ
f f(α) · x (4)

where s, α, τ ∈ R, and f ∈ [s, x].

The labelled transition system just defined can be enriched quantitatively in a
way that generalizes the notion of stochastic Petri nets [20] (Petri nets corre-
spond to the case of a uniformly empty signature Σ = ∅).

To do this we need to define the activity of a rule.

Definition 7. Given an object x and a rule r = s, α, τ , the activity of r at x
is a(x, r) := τ |[s, x]|, and the global activity of a set of rules R at x is a(x) :=∑

r∈R a(x, r).

Supposing a(x) > 0, the probability at x that the next event is f ∈ [s, x] is
p(x, f) := τ/a(x), and the subsequent time advance is a random variable δt(x)
such that p(δt(x) > t) := e−a(x)t. For our present purposes, all we need to
remember is that the quantitative structure of the transition system is entirely
determined by the activities of its rules. In fact this means our result will hold
for a larger class of stochastic system -for what it is worth.

5.2 The Main Result

Given a rule r = s, α, τ and θ ∈ [s, t], we define θ(r) := θ(s), θ(α), τ .
We say r, r′ are isomorphic rules, written r � r′, if there is an isomorphism

θ ∈ [s, s′] such that r′ = θ(r). If that is the case then r and θ(r) have isomorphic
transitions:

x −→r
f∈[s,x] f(α) · x ⇔ x −→θ(r)

fθ−1∈[θ(s),x] fθ−1(θ(α)) · x

and in particular the same activity a(r, x) = a(θ(r), x).

Definition 8 (rule refinement). Given s, Σ such that s ≤ Σ and r = s, α, τ ,
the refinement of r under Σ is the following family of rules:

Σ(s, α, τ) := (t, φ(α), τ ; t ∈ Σ(s), φ ∈ [s, t]e/[t, t]) (5)

where the notation φ ∈ [s, t]e/[t, t] means that for each t, one selects one φ ∈
[s, t]e per symmetry class on t (the equivalence relation ∃θ ∈ [t, t] : φ = θφ′).

It is easily seen that the particular selection made is irrelevant, but one has to
choose one to define refinement as a syntactic transformation.

Note also that the above family can have isomorphic or even identical rules,
it is important to have them all, i.e., stricto sensu the expansion is a multiset
of rules not a set. However one can always pack n isomorphic copies together by
choosing a representative and multiplying its rate by n so we carry on with our
slight abuse of terminology.

Given R a rule set, r a rule in R, we write R[r\Σ(r)] for the rule set obtained
by replacing r with Σ(r).

We write r = s, α, τ ≤ Σ if s ≤ Σ, and R ≤ Σ if for all r ∈ R, r ≤ Σ.
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Theorem 2. Given R, Σ, such that R ≤ Σ, one has R[r\Σ(r)] ≤ Σ, and R and
R[r\Σ(r)] determine the same stochastic transition system over Σ-homogeneous
objects.

Proof: By Th. 1 events f ∈ [s, x] associated to rule r = s, α, τ are in one-one
correspondence with factorizations f = γφ via some t, and therefore determine
a unique matching refined event γ. This refined event has the same effect as f
since:

x −→t,φ,τ
γ∈[t=φ(s),x] γφ(α) · x = f(α) · x

so r and its refinements are equally likely and have the same effect on the un-
derlying state x; hence their stochastic transition systems are the same. �
Note that the activity of t, φ, τ in the refined system is τ |[t, x]| so the cumulative
activity of the refined rules is:

∑
t∈Σ(s)

∑
φ∈[s,t]e/[t,t] τ |[t, x]| =

∑
t∈Σ(s) τ |[s, t]e|/|[t, t]||[t, x]| = a(r, x)

by Coro. 1, so we can directly derive the fact that the refined rules have the
same activity, but we also needed to prove they have the same effect.

5.3 Example Concluded

We can now conclude our initial example.
There we had s := C(), B(), and:

t1 := C(x1), B(x1)
t2 := C(x1), B(x1), C(x2), B(x2)
t3 := C(x1), B(x1), C(x)

Since |[s, t2]e| = 2 (recall that epis must have images in all connected compo-
nents), the refinement of r via t2 will contribute two rules to Σ(r) -according to
Def. 8. In this particular case the action of the rule to be refined is α(r) = −B,
and both epimorphisms φ ∈ [s, t2] lead to the same transported action φ(−B) up
to isomorphism. One can then pack them into one rule r2, as we did intuitively
when we considered the example, and as a consequence the rates must be added.
This explains why r2 has a rate of 2.

6 Conclusion

We have presented in this article the beginning of a theory of refinements for
rule-based modelling. Specifically we have defined what constitutes a notion of
a good set of refined rules and how, given such a set, one can compute the new
refined rates in such a way that the overall activity of the system is preserved
and the underlying stochastic semantics therefore unchanged. We have suggested
two improvements to extend the type of refinement one can consider.

We have also shown how one can use such refinements to obtain a complete
expansion (at least in principle), a construction which could be useful in practice
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to get cheap and fast approximations of a system. We have further shown by
examples that refinements can be useful to modulate the influence of the context
in which a rule is applied.

A point worth commenting in this conclusion is that the formulas obtained in
our two main results, Th. 1 and 2, are couched in rather general terms and are
likely to be of a larger relevance than the particular case of graph-rewriting we
were contemplating here. In particular the epi-mono factorization system which
we rely on implicitly for the concrete case we have treated would point to a
more abstract approach. That in itself is valuable since such combinatorial re-
sults as we have presented here can become nearly intractable if looked at in a
too concrete way. This in fact is one of the reasons why we framed our results in
a categorical language which has revealed the pervasiveness of symmetries (the
other reason is that the syntax is simpler to deal with). It would be particularly
interesting to recast the theory in the axiomatic framework of adhesive cate-
gories [21], with a view on understanding the formula as a traditional partition
formula (which it is, at least intuitively).

A longer term goal that this preliminary work might help to reach is that of
finding exact model reduction techniques. This needs to lift a key assumption
made here, namely that refinements are made of mutually exclusive sub-cases.
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Abstract. Diverse modelling formalisms are applied in Computational Biology.
Some describe the biological system in a continuous manner, others focus on
discrete-event systems, or on a combination of continuous and discrete descrip-
tions. Similarly, there are many simulators that support different formalisms and
execution types (e.g. sequential, parallel-distributed) of one and the same model.
The latter is often done to increase efficiency, sometimes at the cost of accu-
racy and level of detail. JAMES II has been developed to support different mod-
elling formalisms and different simulators and their combinations. It is based on
a plug-in concept which enables developers to integrate spatial and non-spatial
modelling formalisms (e.g. STOCHASTIC π CALCULUS, BETA BINDERS, DEVS,
SPACE-π), simulation algorithms (e.g. variants of Gillespie’s algorithms (includ-
ing Tau Leaping and NEXT SUBVOLUME METHOD), SPACE-π simulator,
parallel BETA BINDERS simulator) and supporting technologies (e.g. partitioning
algorithms, data collection mechanisms, data structures, random number genera-
tors) into an existing framework. This eases method development and result eval-
uation in applied modelling and simulation as well as in modelling and simulation
research.

1 Introduction

A Model (M) for a system (S) and an experiment (E) is anything to which E can be
applied in order to answer questions about S. This definition that has been coined by
Minsky in 1965 [Min65] implies the co-existence of several models for any system.
Each model and its design is justified by its specific objectives. Simulation on the other
hand can be interpreted as “an experiment performed at a model”, as stated by Korn
and Wait [KW78]. The term simulation is sometimes used for one simulation run, but
more often it refers to the entire experimental setting including many simulation runs
and the usage of additional methods for optimization, parameter estimation, sensitivity
analysis etc. Each run requires a multitude of steps: e.g., model selection, initialization,
defining the observers, selecting the simulation engine, and storing results – to name
only a few. Given the long tradition of modelling and simulation, its many facets and the
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diversity of application areas, it is not surprising that a plethora of different modelling
and simulation methods have been developed, and scarcely less simulation tools.

While modelling and simulation has been applied to gain a better understanding of
biological systems for well over four decades, broad interest in applying modelling
and simulation in cell biology has been renewed by recent developments in experimen-
tal methods, e.g. high content screening and microscopy, and has spawned the devel-
opment of new modelling and simulation methods. Since the millennium, the signifi-
cance of stochasticity in cellular information processing has become widely accepted,
so that stochastic discrete-event simulation has emerged as an established method to
complement conventional ordinary differential equations in biochemical simulations.
This is also reflected in simulation tools for systems biology that have started to offer
at least one discrete-event simulator in addition to numerical integration algorithms,
e.g. [ROB05,TKHT04]. The trend to offer more flexibility is not exclusive to the simu-
lation layer. Different parameter estimation methods [HS05] and different possibilities
to describe models (e.g., by rules or with BETA BINDERS [GHP07]), are receiving more
and more attention as well. Thus, the insight is taking hold in the computational biol-
ogy realm that a silver bullet does not exist – there are only horses for courses. This
diversification and the implied need for a flexible simulation framework is likely to in-
crease over the next years, particularly as, in addition to noise, space is entering the
stage of computational biology. In vivo experiments revealed that many intra-cellular
effects depend on space, e.g. protein localization, cellular compartments, and molecular
crowding [Kho06]. Approaches that support both stochasticity and space are therefore
particularly promising [TNAT05, BR06].

The motivation for developing JAMES II (JAva-based Multipurpose Environment for
Simulation) has been to support diverse application areas and to facilitate the devel-
opment of new modelling and simulation methods. JAMES II has been created based
on a “Plug’n simulate” [HU07b] concept which enables developers to integrate their
ideas into an existing framework and thus eases the development and the evaluation
of methods. In the following we will describe basic concepts and some of the current
developments to support cell-biological applications in JAMES II.

2 JAMES II– Plug’n Simulate

The simulation framework JAMES II is a lean system consisting of a set of core classes.
The core of JAMES II is the central and most rarely changed part of the framework.
The main parts are: User interface, Data, Model, Simulator, Simulation, Experiment,
and Registry. We used common software engineering techniques for the creation of
the framework, e.g. the model-view-controller paradigm [GHJV95] for decoupling the
parts, and the abstract factory and factory patterns [GHJV95] for realizing the “Plug’n
simulate” approach. Another important design decision was to split model and simula-
tion code completely. Thus, a simulator can access the interface of a model class but
a model class is never allowed to access something in a simulator class. This makes it
possible to switch the simulation engine (even during runtime) and to exchange the data
structures used for the executable models – an essential feature for a flexible framework.
In combination with an XML-based model component plugin, this flexibility enables
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Fig. 1. Packages of the simulation framework JAMES II [HU07b]

the freedom of choice in regards to model data type, simulator code (algorithm as such
or parts of the simulation algorithms, e.g. event queues), visualization, and runtime en-
vironment. The architecture is sketched in Figure 1. The layers depict the distance of a
user from the packages.

Functionality not included in the core classes, especially modelling formalisms and
simulation algorithms, can be extended by using plugins. Due to the strict separation be-
tween models and simulators, simulation algorithms can be easily exchanged and thus
evaluated. This makes the PlugIn mechanism a base for a reliable evaluation of new
simulation algorithms. For the integration of a new formalism, one has to create model
classes which can represent an instantiated and executable model defined in a certain
formalism. Conducting experiments requires at least one additional plugin that provides
a simulator. Having created the formalism classes, one can directly start to code mod-
els and experiment with them. A prototypical example can be found in [HU07b], where
cellular automata are added to the framework. Plugins exist for a number of formalisms,
among them variants of DEVS [ZPK00], e.g. ML-DEVS [UEJ+07], and variants of the
π CALCULUS, e.g. BETA BINDERS [PQ05] and SPACE-π [JEU08]. If models shall be
described in a declarative manner, a model reader can be used, which converts arbitrary
model definitions (e.g., from XML files or databases) into executable models [RU06]
based on consistency checking of interface descriptions [RM07]. Interface definitions
are according to the Unified Modelling Language 2.0 [OMG05]. Thereby, the provi-
sions and requirements of each model component can be explicitly specified, internal
details of a component, i.e. the implementation of model behaviour, can be hidden, and
direct dependencies between models can be eliminated.

Different formalisms may require different simulation algorithms for their execution.
Different hardware infrastructures (e.g. clusters, workstations, the Grid) may impose re-
strictions or options which should be taken into account by an algorithm. For example,
symmetric multiprocessor machines provide fast access to shared memory. Even mod-
els described in the same formalism might require different simulators for an efficient
simulation, depending on model size and other characteristics. Thus, various simulation
plugins have been implemented for JAMES II. As they all provide simulators, i.e. algo-
rithms that execute models, they are integrated via the simulator extension point.
An extension point subsumes all plugins of one type and provides mechanisms to select
the right plugin for a given problem (see fig. 2).

Other extension points provide partitioning and load balancing, random number gen-
eration and probability distributions, optimization, parameter estimation, data storage
and retrieval, and experiment definitions. JAMES II also offers several extension points
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FactoryCriteria

<<create>> FactoryCriteria()
filter(factories : ArrayList) : ArrayList

AbstractFactory

<<create>> AbstractFactory()
addFactory() : void
addCriteria(fc : FactoryCriteria) : void
getFactoryDirectly()
getFactoryList() : ArrayList
getFactory()

factories : ArrayList
criterias : ArrayList

AbstractFactoryParameter

<<create>> AbstractFactoryParameter()
toString() : String

serialVersionUID : long
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<<create>> Factory()
toString() : String

serialVersionUID : long
i < criteria.count

i := 0;

           factories = criteria[i].filter(factories, parameter);
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factories.count = 0y n

raise exception

Fig. 2. Factory classes and flow-chart describing the plugin filtering process

for the integration of data structures, among them an extension point for the integration
of event queues. Extension points can be defined easily, so their number and the number
of implemented plugins grows steadily.

The simulator extension point can be combined with other extension points and
forms the basis of a flexible and scalable experimentation layer. Such an experimen-
tation layer can adapt to different types of experiments (e.g. optimization, validation),
to different execution schemes (e.g. sequential, parallel distributed), and to different
models realized in different modelling formalisms.

The selection process for a simulation algorithm is illustrated in figure 2. Several
criteria are subsequently applied to select a suitable simulation algorithm. The first cri-
terion is built-in and selects factories according to the user parametrization of the run.
Each plugin is described by a list of factories and a name [HU07b]. For example, se-
lecting a suitable simulator requires to apply a set of specific criteria for factories that
can instantiate those for the model at hand. Such a factory also needs to suit the given
partition (i.e. whether to compute the model in a distributed or sequential manner), and
finally the most efficient factory shall be determined. For this, we strive to take earlier
experiences regarding simulator performance into account [EHUar] (see section 4.2).

Experiments with JAMES II show that exchangeable algorithms are the precondi-
tion for an efficient execution of experiments [HU07a]. In addition, a subset of these
algorithms are reusable across simulation algorithms, even if they have been designed
for different formalisms. Thus, the implementation effort required for the creation of
algorithms is significantly reduced, see e.g. [HU04]. In addition, the validation and
evaluation of simulation algorithms is eased in such a framework: a novel algorithm
simply has to be added to the framework and can be compared to all competing so-
lutions, without bias or the need to recode those. The benefits of reusing simulation
algorithms or data structures is similar to the arguments that pushes the development
of model components. For example, if we define the nucleus as one model component,
this allows us to easily replace the model by more abstract, refined, or alternative ver-
sions. Thus, a space of interesting hypotheses referring to the system under study can
be evaluated without the need to recode the complete model. This freedom of choice
with respect to model and simulator configuration is accompanied by an explicit repre-
sentation of the experimental setting in XML, ensuring repeatability of simulation runs
and comparability of the results achieved by alternative models.
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3 Modelling Formalisms Supported in JAMES II

Modelling means to structure our knowledge about a given system. Thereby, the
modelling formalism plays a crucial role. Whereas continuous modelling formalisms
support a macro, population-based view, with its associated continuous, deterministic
dynamics progressing at the same speed and being based on real-valued variables, dis-
crete event approaches in contrast tend to focus on a micro perception of systems and
their discrete, stochastic dynamics. Variables can be arbitrarily scaled. Sub-systems ad-
vance over a continuous time scale, but in steps of variable size. Discrete event models
forego assumptions about homogeneous structure or behaviour. For example, DEVS

[ZPK00], PETRI NETS [Mur89], STATE CHARTS [Har87] and STOCHASTIC π CAL-
CULUS [Pri95] are formal and generally applicable approaches toward discrete event
systems modelling. Their use has been explored in Systems Biology (e.g. [PRSS01,
FPH+05, EMRU07]), and depending on their success inspired a broader exploitation
and the refinement of methods. The focus in JAMES II has been on discrete event for-
malisms, with emphasis on DEVS, followed by STOCHASTIC π CALCULUS; lately a
first plugin for STATE CHARTS has been implemented.

3.1 Biologically Inspired Variants of DEVS

The strength of DEVS lies in its modular, hierarchical design which provides a basis
for developing complex cellular models, whose individual entities are easy to under-
stand if visualized, e.g. by a STATE CHARTS variant. In contrast to STATE CHARTS, the
interaction between individual components is explicitly modelled and the interfaces be-
tween systems are clearly described by input and output ports. DEVS supports a parallel
composition of models via coupling. The general structure of DEVS models is static, a
problem that it shares with STATE CHARTS and PETRI NETS. The generation of new
reactions, new interactions, or new components is therefore not supported by default.
Starting already in the 1980s, several extensions have addressed the problem of variable
structures, among them recent developments like DYNDEVS, ρ-DEVS, and ML-DEVS,
which are realized as plugins in JAMES II.

DYNDEVS [Uhr01] is a reflective variant of DEVS which supports dynamic behav-
iour, composition, and interaction patterns. In ρ-DEVS [UHRE06] dynamic ports and
multi-couplings are introduced, whose combination allows models to reflect significant
state changes to the outside world and to enable or disable certain interactions at the
same time. Unlike DEVS, which realizes an extensional definition of couplings between
individual ports, multi-couplings in conjunction with variable ports form an elegant
mechanism of dynamic coupling. ML-DEVS [UEJ+07] is our most recent addition to
the family of DEVS-formalisms. It inherits from ρ-DEVS variable structures, dynamic
ports, and multi-couplings. In addition, it supports an explicit description of macro and
micro level. Therefore, the coupled model is equipped with a state and a behaviour of
its own, such that the macro level does not appear as a separate unit (an executive) of the
coupled model. Secondly, information at macro level can be accessed from micro level
and vice versa, which is realized by value couplings and variable ports. Downward and
upward activation can be modelled by synchronous activation of multiple micro models
and invariants at macro level. Current work is dedicated to applying the formalism to
RNA secondary structure prediction and associated regulatory mechanisms.
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Fig. 3. Comparison of multi-level modelling with DEVS and ML-DEVS. (A) With DEVS the
macro level behaviour is modelled at the same hierarchical level as the micro level models. (B)
With ML-DEVS the macro dynamics are part of the coupled model. Functions for downward and
upward causation reduce the number of explicit couplings needed.

Whereas the biologically inspired extensions of the DEVS formalisms aim to soften
the original rigid, modular and hierarchical structure of the formalism, e.g. by intro-
ducing variable structures, variable ports, and multi-level interactions, the opposite de-
velopment can be observed for other formalisms which introduce additional means to
structure biological models. These structures are often spatially interpreted, e.g. in terms
of cell membranes or compartments. For example, this is the case for BETA BINDERS,
which base on STOCHASTIC π CALCULUS.

3.2 Taking Space into Account: SPACE-π

BETA BINDERS [PQ05], as well as MEMBRANE-CALCULI [Car03] or BIOAMBIENTS

[RPS+04], address the need to structure space into compartments and confine processes
and their interactions spatially. Here, the focus is on indirect, relative space. Given the
experimental setups, e.g. confocal microscopy, biologists are particularly interested in
a combination of the individual-based approach with absolute space. This has been the
motivation for developing SPACE-π [JEU08]. SPACE-π extends the π CALCULUS in
a way such that processes are associated with coordinates and individual movement
functions. The coordinates are related to a given vector space that provides a norm
for calculating distances. A minimum distance is assigned to each channel. As usual,
processes can communicate over a channel, but as an additional requirement their dis-
tance must be less than or equal to the minimum distance of the channel. Processes
move continuously between interactions, as determined by their movement functions.
Therefore, SPACE-π is considered to be a hybrid modelling formalism.

Introducing space to the π CALCULUS seems to be straightforward, as it just requires
some further restrictions to the standard communication rule. However, an explicit no-
tion of time is needed to describe movement functions. Therefore, an essential compo-
nent of SPACE-π is a timed version of the π CALCULUS. Although many timed process
algebras already exist, the common concept of extending process algebras with time
as presented in [NS92] cannot be used. This is because on one hand SPACE-π requires
communication to occur as soon as possible, e.g. to describe colliding molecules. On
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the other hand, the time of an interaction strongly depends on process motion. Since
processes can change their motion by communication, one interaction may have an im-
pact on all future events. Therefore, the essential assumption of timed process algebras
to consider processes one by one and let them idle for a certain amount of time does not
hold in case of SPACE-π. Instead, to assure a valid execution, the global minimum time
for the next reaction needs to be calculated after every communication. This makes the
approach rather unique in the context of timed process algebras.

The advantage of the SPACE-π approach is that intracellular structures and spatial
effects can be represented in a very detailed manner. It is possible to build the trails
of membranes or microtubules, to introduce compartments and active transportation
processes. Even the impact of molecule sizes and shapes can be modelled. This makes
the approach applicable to scenarios that are hard to model with implicit representations
of space.

P1 P2

P1P2

P1 P2

d(x)

P1 P2

Fig. 4. Communication of two processes: P1 and P2 move along some vectors given by their
movement functions. If one process is sending and the other receiving on channel x, they can
communicate because at some point in time their distance is less than the channel distance d(x).
Thereby, they change their movement functions such that they move along different vectors after
communicating. Although depicted as simple vectors here, SPACE-π’s movement functions can
also be used to describe more complex continuous motions.

3.3 Summary

Several plugins exist for various formalisms, including ML-DEVS, SPACE-π, STOCHAS-
TIC π CALCULUS, BETA BINDERS, and chemical reaction networks (described by re-
action rules). Although the supported formalisms are quite different, their realization
has been facilitated by the core classes in JAMES II and also a reuse of data structures
across different formalisms has reduced the implementation effort (see section 5 for fur-
ther details). However, the architecture and the “Plug’n simulate” concept of JAMES II
are even more significant for developing simulation algorithms. For each modelling
formalism there is at least one simulator plugin, but many are supported by several
simulation algorithms. Up to now, no “multi formalism” approaches are integrated into
JAMES II, although such an integration would not pose any problems for the archi-
tecture. Some work in this direction is under way, e.g. to combine π CALCULUS and
DEVS [MJU07]. These approaches will be strictly separated from the existing realiza-
tions (besides the aforementioned reuse of sub-algorithms and data structures) to ensure
an efficient execution.
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4 Simulation Engines for Computational Biology in JAMES II

The simulation layer of JAMES II focuses on the discrete event world, although some
plugins for numerical integration and hybrid simulation exist as well. Gillespie’s al-
gorithms [Gil77] and their variants are of particular interest for the area of systems
biology and their implementation in JAMES II reflects the idea of re-usable simula-
tion algorithms and data structures. In the following, these and a similar set of process
algebra simulators will serve as examples.

In [Gil77], Gillespie introduced two methods to stochastically simulate reaction net-
works, the Direct Method and the First Reaction Method. Although both methods pro-
duce the same results, their performance may differ strongly. This is caused by the use
of different operations. For example, the Direct Method needs to generate only two
random numbers per iteration, whereas the First Reaction variant needs r + 1 random
numbers per iteration, r being the number of reactions. Gibson and Bruck propose some
enhancements to Gillespie’s original algorithms in [GB00], the Next Reaction Method.
The new method reduces the time-consuming re-calculation of reaction propensities.
A dependency graph is used to identify the reactions that require a propensity update.
Furthermore, Gibson and Bruck’s approach linearly interpolates the reaction times of
all updated reactions, so that the generation of additional random numbers is avoided.
Although all SSA approaches work well for small systems and deliver exact stochastic
results, they do not perform well when applied to larger problems. This is especially
true for systems with concurrent reactions of differing speed (e.g., gene expression and
metabolic reactions): If populations of the metabolites are sufficiently high, many it-
erations (and propensity updates) are needed without any significant changes in any
reaction propensity. This problem is equivalent to the challenge of numerically inte-
grating stiff ODE systems. To overcome this problem in the discrete-event realm, a
technique called Tau Leaping has been introduced by Gillespie et al. [Gil01]. Tau Leap-
ing approximates the execution of Gillespie’s exact approach by leaping forward a time
step τ , in which the propensities of all reactions are approximately constant. How often
each reaction has occurred during this leap can be determined by a Poisson distribution.
All reaction occurrences are then executed at once, their propensities are updated, and
the algorithm continues by determining the size of the τ leap for the next iteration. One
has to solve several problems to implement a suitable Tau Leaping method, as outlined
in [TB04, CGP06]. The Direct Method, two implementation variants of the Next Reac-
tion Method, and Tau Leaping have been realized as plugins in JAMES II. They operate
on the same model interface and re-use auxiliary data structures like event queues, etc.

4.1 Taking Space into Account

Different approaches toward spatial simulation exist [TNAT05]. At the microscopic
level, the fields of molecular dynamics [vGB90] and Brownian dynamics permit the
accurate simulation of single interacting particles in continuous space. However, their
high computational effort hampers their applications to large scale models containing
many thousand particles. Rather than considering individual particles and instead focus-
ing on concentrations of species, partial differential equations operate on a macroscopic
level with continuous space and time. As the approach is deterministic, stochastic ef-
fects cannot be taken into account easily. The basic algorithm for simulating reactions
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Fig. 5. Left: Discretization of a volume into smaller sub-volumes with side length l. The diffusion
of molecules between neighbouring sub-volumes is modelled as a Markov process with diΔt =
Di
l2

· Δt as the probability that a particular molecule of species i performs a diffusion during
the infinitesimal small time step Δt (with Di as the diffusion constant for species i). Right: The
concentration for sub-volumes of a simple model is plotted for different time stamps. The model
consists of a row of 20 sub-volumes with an initial distribution of 1000 molecules of species A
in sub-volume 0 and 1000 molecules of species B in sub-volume 19 and a consuming reaction
A+B → C. Molecules A and B diffuse towards the centre where they react and the concentration
of molecule C increases.

between chemical species on a mesoscopic level (no individuals, but discrete amount
of species elements) is the already mentioned stochastic simulation algorithm (SSA)
by Gillespie [Gil77]. One key assumption is that the distribution of the species inside
the volume is homogeneous. To simulate systems that do not adhere to this assumption,
other approaches that allow to consider compartments and the diffusion of species are
necessary, e.g. [Kho06].

A common way of introducing diffusion on mesoscopic level is the partition of space
into sub-volumes and the extension of the master equation with a diffusion term, re-
sulting in the reaction-diffusion master equation (RDME) [Gar96]. The solution of the
RDME is intractable for all but very simple systems, leading to the development of
the Next-Subvolume Method (NSM) [EE04], an algorithm that generates trajectories
of an underlying RDME, similarly to SSA sampling the chemical master equation.
The Next-Subvolume Method is a discrete-event algorithm for simulating both reac-
tions and diffusion of species within a volume in which particles are distributed inho-
mogeneously. The volume is partitioned into cubical sub-volumes, each representing a
well-stirred system. Events generated by the algorithm are either reactions inside or dif-
fusions between these sub-volumes. A plugin for NSM has been realized in JAMES II.
NSM uses a variant of Gillespie’s Direct Method to calculate the first event times for
all sub-volumes during initialization. Within the main loop, the sub-volume assigned
to the smallest next event time is selected and the current event type according to the
diffusion and reaction rates is determined. Finally, the event is executed and an update
of the model state occurs. Note that the state update is performed only in a small region
of the model volume, because either one sub-volume (in the case of a reaction) or two
sub-volumes (in the case of a diffusion) are affected and their propensities and next
event times have to be updated. With its discretization of space into sub-volumes, the
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Next-Subvolume Method lends itself to a distributed parallel execution by assigning sets
of sub-volumes to logical processes. Messages exchanged between logical processes
correspond to diffusion events involving neighbouring sub-volumes that reside on dif-
ferent logical processes. Current work is directed towards exploring the specific require-
ments and potential of an optimistic NSM version on a grid-inspired platform and first
results of our experiments with an optimistic NSM variant are reported in [JEP+ar]. Our
developments based on NSM have not been driven by specific modelling formalisms –
the modelling formalisms for the Gillespie variants are simple reaction networks, which
have been enriched for the NSM simulator by assigning diffusion coefficients to the
species and information about their spatial distribution. The focus has been on the sim-
ulation layer taking Gillespie’s approach as a starting point. The development of other
simulators has been motivated by supporting specific modelling formalisms.

As STOCHASTIC π CALCULUS, SPACE-π, and BETA BINDERS have a common root,
basic plugins to support the π CALCULUS have been added to JAMES II. They form a
common base for all simulators processing variants of the π CALCULUS. The SPACE-π
formalism locates and moves individual processes in absolute space, hence its simulator
works in an individual-based manner. With movement functions that are defined to be
continuous and could, in principle, even be defined by differential equations, the formal-
ism is clearly hybrid. The hybrid state comprises, besides the processes themselves, all
processor positions which change continuously over time. Obviously, this situation pro-
vides plenty of challenges for an efficient execution of larger SPACE-π systems. Hence,
we developed and implemented an algorithm that approximates movement functions by
a sequence of vectors, each of them interpolating the function for δt time, resulting in a
discretization of the continuous movement of the processes into a sequence of uniform
motions. As δt can be chosen arbitrarily, the approximation’s fidelity can be adjusted
seamlessly [JEU08]. The advantage of the simulation is its decent computational com-
plexity, however, if more complex movement functions are involved or a very precise
result is necessary, the current solution will not be sufficient and other algorithms will
be needed, e.g. approximation methods that adapt their interval size to the slope of the
movement functions at hand.

The modelling formalism BETA BINDERS (developed by [PQ05]) provides, simi-
larly to DEVS, means to structure space relatively, e.g. to describe compartments or to
distinguish between inter and intra-cellular behaviour by introducing boxes (so called
BIOPROCESSES) and explicit interaction sites. A sequential simulator [HLP+06] and
a parallel one have been developed for the BETA BINDERS formalism as JAMES II
plugins [LPU07]. The stochastic interaction between BIOPROCESSES does not allow
an easy definition of lookaheads, which moves the attention to optimistic parallel ap-
proaches. However, due to the large effort required in handling the model structure
an unbounded optimistic simulation does not appear very promising either. Therefore,
we decided to combine conservative and optimistic features in a parallel simulator.
Whereas the intra events (that are taking place within one box) are processed in an op-
timistic manner, the inter events form a kind of barrier and as such are only processed
if they are safe. The later is guaranteed by letting all BIOPROCESSES advance up to
this barrier [LPU07]. As with all parallel, distributed approaches the question of how
to best partition such a model arises, and is subject of ongoing work. JAMES II allows
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Performance Dependency of Next Reaction Method in James II
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Fig. 6. Performance dependency of the Next Reaction Method regarding the event queue imple-
mentation (see [HU07a] for other examples and a discussion of the algorithms). Each setup was
replicated 3 - 15 times.

to develop new simulators with very little effort. This is particularly true for simulator
families, e.g. simulators for variants of modelling formalisms, e.g. DEVS [HU04] or π
CALCULUS. However, also simulators that are quite different share a lot of details. Their
re-use reduces programming effort, errors, and, at the same time, increases the chance
of an unbiased evaluation. As these details have typically also a significant impact on
the efficiency of the simulation engine, they deserve a closer look.

4.2 Details Matter

Simulators are usually not built as monolithic algorithms, but consist of several sub-
structures and sub-algorithms. These may have a strong impact on simulation speed
and even the accuracy of the produced results (e.g. when considering approximation
algorithms). Simulation algorithms may rely on event queues [HU07a], random number
generators, or data structures to manage the simulator’s state. Parallel and distributed
simulators may also require partitioning or load balancing algorithms.

JAMES II provides several plugins for most of those sub-algorithms, including ran-
dom number generators, probability distributions, event queues, and partitioning algo-
rithms. As an illustration, consider the average runtime of the Next Reaction Method
implementation of JAMES II (see section 4) when using different event queue imple-
mentations (figure 6).

The benchmark model was a simple 10-species reaction network with arbitrarily
many reactions of form Xi + Xi+1 → Xi+2, but the performance difference is still
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considerable (≈ 400% when choosing SimpleEventQueue instead of SimpleBuckets)
– even considering different implementations of the same algorithm (cf. TwoList and
TwoList2 in fig. 6).

Thus, data structures like event queues are of essential importance when evaluating
discrete-event simulators. They influence the performance of the simulation engine and
may in turn be influenced by certain properties of the model. For example, the perfor-
mance of an event queue may depend on the distribution of event time stamps. These
interdependencies are a general problem in assessing algorithm performance. The de-
sign of JAMES II facilitates algorithm performance evaluation and development of new
simulation methods by allowing for isolated testing within a fixed, unbiased experimen-
tation environment. The “Plug’n simulate” concept complements this idea by providing
means to add new functionality to the system [HU07b].

Partitioning is another domain where sub-algorithms play an important role. Model
partitioning, i.e. distributing model entities over the set of available processors, is a
prerequisite for any distributed simulation. It aims at minimizing communication be-
tween parallel simulation processes and assigning each processor a fair share of entities.
Doing it badly may hamper the performance of a distributed simulation algorithm to
the point of slower-than-sequential simulation speed. JAMES II provides a partitioning
layer [EHU06] to experiment with different partitioning strategies. Several partitioning
algorithms have been integrated as plugins (including a wrapper for the METIS [KK98]
package) and have been evaluated. Again, experiments showed that the performance
gain from using a particular partitioning strategy depends on the simulation algorithm,
the model, and the available infrastructure.

Simulation experiments in computational biology are typically not restricted to sin-
gle simulation runs. They may require thousands of replications and could even include
parameter estimation or optimization methods on top (for which again a multitude of
methods exist), so that performance issues become even more pressing. Additionally,
new algorithms are frequently proposed and need to be evaluated. For example, Cao et
al. introduced an optimized version of Gillespie’s Direct Method, which is faster than
the Next Reaction Method on many problem instances [CLP04]. JAMES II allows to re-
validate these findings with custom event queue implementations, since these may have
a huge impact on the overall performance [CLP04]. Simulation algorithms that have
been built upon the SSA approach, such as the Next Subvolume Method (see section
4), will also benefit from such re-validations, because performance analysis could direct
implementation efforts to the most promising code optimizations. These challenges mo-
tivated the creation of an infrastructure for simulation algorithm performance analysis
in JAMES II [EHUar], which should lead to effective algorithm selection mechanisms
in the future.

5 Benefits of JAMES II

The integration of so many aspects into a single modelling and simulation framework
requires considerable additional software engineering efforts. From our experiences,
these efforts are vastly compensated by time savings from reuse and other benefits,
such as unbiased algorithm comparison and validation.
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JAMES II provides reuse on different levels. If an additional modelling paradigm
shall be supported, only the modelling formalism and at least one simulation algorithm
have to be added. Plugins from other extension points, e.g. the experimentation layer
with algorithms for optimization, random number generation, partitioning, data sinks
and so on, can be reused without any further effort. The actual development of new plu-
gins is supported by predefined algorithms and data structures. For example, simulation
algorithms that rely on event queues simply reuse the validated and evaluated ones from
the corresponding JAMES II extension point. This reduces the effort for developing new
modelling formalisms and simulators significantly.

The integration of new simulation algorithms for existing formalisms is eased as
well. Often only small variations between simulators that execute a formalism – e.g.
sequentially, in parallel, paced, or unpaced – do exist. To generate a paced variant from
an unpaced one usually requires merely a few lines of code, e.g. the Template pattern
helped us to develop a set of simulators for DEVS with very little effort [HU04]. Newly
developed algorithms can be evaluated and validated easily by comparing their results
with those of existing algorithms. Does the new algorithm produce the same results?
For which type of model and available infrastructure works the new algorithm best?
Developing simulators for new variants of already supported modelling formalisms, e.g.
ML-DEVS or SPACE-π, also requires less effort, because parts of existing simulators can
still be reused. This is also helpful to identify essential parts and re-occurring patterns
in simulation algorithms, which facilitates the conception of new simulation engines.

New data structures and algorithms become available in all situations where their
corresponding extension points are used. If a new random number generator or a new
event queue is available, it can be directly used in all relevant settings, e.g. when ex-
perimenting with stochastic and discrete event models. Thus, new developments are in-
stantly propagated to all potential users. The development of particular data structures
and algorithms can be done by domain experts, who have the required knowledge and
experience. This is very important, as the field of modelling and simulation subsumes
a variety of different expertises. These range from in-depth knowledge about mathe-
matics (random number generation, sensitivity analysis, optimization, statistics, graph
theory) and computer science (databases, compilers, efficient data structures and algo-
rithms in general) up to application-specific extensions required for certain domains,
e.g. the use of metaphors in biology.

6 Conclusion

The purpose of JAMES II is twofold. On the one hand its flexibility and scalability is
aimed at supporting a wide range of different application areas and different require-
ments. This feature has shown to be of particular value in research areas like Compu-
tational Biology, which is characterized by the wish to experiment with diverse model
and simulation types. On the other hand JAMES II’s virtue lies in facilitating the devel-
opment and evaluation of new modelling and simulation methods.

Thus, to support application studies and methodological studies equally is the strength
of JAMES II, which is also reflected in current projects. Some of them are directed
towards applications, e.g. models of the Wnt signalling pathway, or gene regulatory
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mechanisms. Others are concerned with the development of new modelling and simu-
lation methods, including modelling formalisms like ML-DEVS and SPACE-π, or new
simulators like the parallel optimistic versions for BETA BINDERS and NEXT SUBVOL-
UME METHOD, and the combination of modelling formalisms and simulator engines.
Both endeavours are tightly connected, as new requirements drive the development of
new methods. Both types of our experiments are directed towards a better understand-
ing of complex systems, i.e. biological systems and simulation systems, and their many
interdependencies.
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[RM07] Röhl, M., Morgenstern, S.: Composing simulation models using interface defini-
tions based on web service descriptions. In: WSC 2007, pp. 815–822 (2007)

[ROB05] Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: Stochastic simulation of large scale
genetic regulatory networks. Journal of Bioinformatics and Computational Biol-
ogy 01(13), 415–436 (2005)

[RPS+04] Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients:
an abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167
(2004)
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ports and multi-couplings for cell biological modeling in devs. In: Proc. of the
2006 Winter Simulation Conference, pp. 832–840 (2006)

[vGB90] van Gunsteren, W.F., Berendsen, H.J.: Computer simulation of molecular dy-
namics: Methodology, applications, and perspectives in chemistry. Angewandte
Chemie International Edition in English 29(9), 992–1023 (1990)

[ZPK00] Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation. Aca-
demic Press, London (2000)

http://www.omg.org/cgi-bin/doc?formal/05-07-04


Author Index

Bal, Henri 48
Batt, Grégory 77
Bonzanni, Nicola 48

Danos, Vincent 103

Ewald, Roland 123

Fages, François 90
Feenstra, Anton 48
Feret, Jérôme 103
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